Analytical and Bioanalytical Chemistry

, Volume 406, Issue 27, pp 6963–6977 | Cite as

Trends in single-cell analysis by use of ICP-MS

  • Larissa Mueller
  • Heike Traub
  • Norbert Jakubowski
  • Daniela Drescher
  • Vladimir I. Baranov
  • Janina Kneipp
Trends
Part of the following topical collections:
  1. Single Cell Analysis

Abstract

The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of “multimodal spectroscopies.”

Keywords

Bioanalytical methods Cell systems/single cell analysis Mass spectrometry/ICP-MS 

References

  1. 1.
    Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG (2013) Chemical analysis of single cells. Anal Chem 85(2):522–542. doi:10.1021/ac303290s CrossRefGoogle Scholar
  2. 2.
    Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in 'omics'. Trends Biotechnol 28(6):281–290. doi:10.1016/j.tibtech.2010.03.002 CrossRefGoogle Scholar
  3. 3.
    Lin YQ, Trouillon R, Safina G, Ewing AG (2011) Chemical analysis of single cells. Anal Chem 83(12):4369–4392. doi:10.1021/Ac2009838 CrossRefGoogle Scholar
  4. 4.
    Lanni EJ, Rubakhin SS, Sweedler JV (2012) Mass spectrometry imaging and profiling of single cells. J Proteome 75(16):5036–5051. doi:10.1016/j.jprot.2012.03.017 CrossRefGoogle Scholar
  5. 5.
    Guo YS, Li XM, Ye SJ, Zhang SS (2013) Modern optical techniques provide a bright outlook for cell analysis. TrAC Trends Anal Chem 42:168–185. doi:10.1016/j.trac.2012.09.018 CrossRefGoogle Scholar
  6. 6.
    Kleparnik K, Foret F (2013) Recent advances in the development of single cell analysis—a review. Anal Chim Acta 800:12–21. doi:10.1016/j.aca.2013.09.004 CrossRefGoogle Scholar
  7. 7.
    Proefrock D, Prange A (2012) Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl Spectrosc 66(8):843–868. doi:10.1366/12-06681 CrossRefGoogle Scholar
  8. 8.
    Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res 12(7):2313–2333. doi:10.1007/s11051-010-9911-8 CrossRefGoogle Scholar
  9. 9.
    Cerchiaro G, Manieri TM, Bertuchi FR (2013) Analytical methods for copper, zinc, and iron quantification in mammalian cells. Metallomics 5(10):1336–1345. doi:10.1039/c3mt00136a CrossRefGoogle Scholar
  10. 10.
    Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88(11):1591–1604. doi:10.1016/j.biochi.2006.10.003 CrossRefGoogle Scholar
  11. 11.
    McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109(10):4780–4827. doi:10.1021/cr900223a CrossRefGoogle Scholar
  12. 12.
    Ortega R, Deves G, Carmona A (2009) Biometals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy. J R Soc Interface 6:649–658. doi:10.1098/rsif.2009.0166.focus CrossRefGoogle Scholar
  13. 13.
    Ortega R (2005) Chemical elements distribution in cells. Nucl Inst Methods Phys Res B 231:218–223. doi:10.1016/j.nimb.2005.01.060 CrossRefGoogle Scholar
  14. 14.
    Qin Z, Caruso JA, Lai B, Matusch A, Becker JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3(1):28–37. doi:10.1039/c0mt00048e CrossRefGoogle Scholar
  15. 15.
    Wu B, Becker JS (2011) Imaging of elements and molecules in biological tissues and cells in the low-micrometer and nanometer range. Int J Mass Spectrom 307(1/3):112–122. doi:10.1016/j.ijms.2011.01.019 CrossRefGoogle Scholar
  16. 16.
    Konz I, Fernandez B, Fernandez ML, Pereiro R, Sanz-Medel A (2012) Laser ablation ICP-MS for quantitative biomedical applications. Anal Bioanal Chem 403(8):2113–2125. doi:10.1007/s00216-012-6023-6 CrossRefGoogle Scholar
  17. 17.
    Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29(1):156–175. doi:10.1002/mas.20239 Google Scholar
  18. 18.
    Giesen C, Waentig L, Panne U, Jakubowski N (2012) History of inductively coupled plasma mass spectrometry-based immunoassays. Spectrochim Acta B 76:27–39. doi:10.1016/j.sab.2012.06.009 CrossRefGoogle Scholar
  19. 19.
    Hare D, Austin C, Doble P (2012) Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst 137:1527–1537CrossRefGoogle Scholar
  20. 20.
    Wu B, Niehren S, Becker JS (2011) Mass spectrometric imaging of elements in biological tissues by new BrainMet technique-laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS). J Anal At Spectrom 26(8):1653–1659. doi:10.1039/c1ja10106d CrossRefGoogle Scholar
  21. 21.
    Nomizu T, Kaneco S, Tanaka T, Ito D, Kawaguchi H, Vallee BT (1994) Determination of calcium content in individual biological cells by inductively-coupled plasma-atomic emission-spectrometry. Anal Chem 66(19):3000–3004. doi:10.1021/ac00091a004 CrossRefGoogle Scholar
  22. 22.
    Haraguchi H, Ishii A, Hasegawa T, Matsuura H, Umemura T (2008) Metallomics study on all-elements analysis of salmon egg cells and fractionation analysis of metals in cell cytoplasm. Pure Appl Chem 80(12):2595–2608Google Scholar
  23. 23.
    Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19(1):5–14. doi:10.1039/B308213j CrossRefGoogle Scholar
  24. 24.
    Li F, Armstrong DW, Houk RS (2005) Behavior of bacteria in the inductively coupled plasma: atomization and production of atomic ions for mass spectrometry. Anal Chem 77(5):1407–1413. doi:10.1021/ac049188l CrossRefGoogle Scholar
  25. 25.
    Ho K-S, Chan W-T (2010) Time-resolved ICP-MS measurement for single-cell analysis and on-line cytometry. J Anal At Spectrom 25(7):111–1122. doi:10.1039/c002272a CrossRefGoogle Scholar
  26. 26.
    Tsang CN, Ho KS, Sun HZ, Chan WT (2011) Tracking bismuth antiulcer drug uptake in single Helicobacter pylori cells. J Am Chem Soc 133(19):7355–7357. doi:10.1021/ja2013278 CrossRefGoogle Scholar
  27. 27.
    Groombridge AS, Miyashita S, Fujii S, Nagasawa K, Okahashi T, Ohata M, Umemura T, Takatsu A, Inagaki K, Chiba K (2013) High sensitive elemental analysis of single yeast cells (saccharomyces cerevisiae) by time-resolved inductively-coupled plasma mass spectrometry using a high efficiency cell introduction system. Anal Sci 29(6):597–603CrossRefGoogle Scholar
  28. 28.
    Zheng LN, Wang M, Wang B, Chen HQ, Ouyang H, Zhao YL, Chai ZF, Feng WY (2013) Determination of quantum dots in single cells by inductively coupled plasma mass spectrometry. Talanta 116:782–787. doi:10.1016/j.talanta.2013.07.075 CrossRefGoogle Scholar
  29. 29.
    Shigeta K, Traub H, Panne U, Okino A, Rottmann L, Jakubowski N (2013) Application of a micro-droplet generator for an ICP-sector field mass spectrometer - optimization and analytical characterization. J Anal At Spectrom 28:646–656CrossRefGoogle Scholar
  30. 30.
    Shigeta K, Koellensperger G, Rampler E, Traub H, Rottmann L, Panne U, Okino A, Jakubowski N (2013) Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into ICP-sector field mass spectrometer for label free detection of trace elements. J Anal At Spectrom 28(5):637–645CrossRefGoogle Scholar
  31. 31.
    Verboket PE, Borovinskaya O, Meyer N, Günther D, Dittrich PS (2014) A new microfluidics-based droplet dispenser for ICPMS. Anal Chem 86:6012–6018. doi:10.1021/ac501149a CrossRefGoogle Scholar
  32. 32.
    Chen BB, Heng SJ, Peng HY, Hu B, Yu X, Zhang ZL, Pang DW, Yue X, Zhu Y (2010) Magnetic solid phase microextraction on a microchip combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for determination of Cd, Hg, and Pb in cells. J Anal At Spectrom 25(12):1931–1938. doi:10.1039/c0ja00003e CrossRefGoogle Scholar
  33. 33.
    Wang H, Wu ZK, Zhang Y, Chen BB, He M, Hu B (2013) Chip-based liquid phase microextraction combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for trace metal determination in cell samples. J Anal At Spectrom 28(10):1660–1665. doi:10.1039/c3ja50223f CrossRefGoogle Scholar
  34. 34.
    Badiei HR, Rutzke MA, Karanassios V (2002) Calcium content of individual, microscopic, (sub) nanoliter volume Paramecium sp. cells using rhenium-cup in-torch vaporization (ITV) sample introduction and axially viewed ICP-AES. J Anal At Spectrom 17(9):1007–1010. doi:10.1039/b203352f CrossRefGoogle Scholar
  35. 35.
    Hamid RB (2004) Further development, optimization, and characterization of in-torch vaporization-inductively coupled plasma (ITV-ICP) spectrometry; 487 pp Avail: UMI, Order No DANQ91978 from: Diss Abstr Int, B 2004, 65(5), 2387Google Scholar
  36. 36.
    Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefGoogle Scholar
  37. 37.
    Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8):1639–1644. doi:10.1021/nn800330a CrossRefGoogle Scholar
  38. 38.
    Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel AE (2012) The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 26;6(6):4921–4930. doi:10.1021/nn300425a CrossRefGoogle Scholar
  39. 39.
    Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem 84(22):9684–9688CrossRefGoogle Scholar
  40. 40.
    Drescher D, Zeise I, Traub H, Guttmann P, Seifert S, Büchner T, Jakubowski N, Schneider G, Kneipp J (2014) In situ Characterization of SiO2 nanoparticle biointeractions using bright silica. Adv Funct Mater 24:3765–3775. doi:10.1002/adfm.201304126 CrossRefGoogle Scholar
  41. 41.
    Wang HAO, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JRH, Bodenmiller B, Gunther D (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(21):10107–10116. doi:10.1021/ac400996x CrossRefGoogle Scholar
  42. 42.
    Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schüffler PJ, Grolimund D, Buhmann JM, Brandt S (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. doi:10.1038/NMETH.2869 Google Scholar
  43. 43.
    Jiang L, Qian J, Cai F, He S (2011) Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Anal Bioanal Chem 400(9):2793–2800CrossRefGoogle Scholar
  44. 44.
    Drescher D, Kneipp J (2012) Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 41(17):5780–5799CrossRefGoogle Scholar
  45. 45.
    Hagenhoff B, Breitenstein D, Tallarek E, Möllers R, Niehuis E, Sperber M, Goricnik B, Wegener J (2012) Detection of micro- and nano-particles in animal cells by ToF-SIMS 3D analysis. Surf Interf Anal 45(1):315–319CrossRefGoogle Scholar
  46. 46.
    Haase A, Arlinghaus HF, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, Galla S, Plendl J, Goetz ME, Masic A, Meier W, Thünemann AF, Taubert A, Luch A (2011) Application of laser post-ionization secondary neutral mass spectrometry/time-of-flight secondary ion mass spectrometry in nanotoxicology: visualization of nanosilver in human macrophages and cellular responses. ACS Nano 26;5(4):3059–3068. doi:10.1021/nn200163w CrossRefGoogle Scholar
  47. 47.
    Managh AJ, Edwards SL, Bushell A, Wood KJ, Geissler EK, Hutchinson JA, Hutchinson RW, Reid HJ, Sharp BL (2013) Single cell tracking of gadolinium labeled CD4(+) T cells by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(22):10627–10634. doi:10.1021/ac4022715 CrossRefGoogle Scholar
  48. 48.
    Schwarz G, Mueller L, Beck S, Linscheid MW (2014) DOTA-based metal labels for protein quantification: a review. J Anal At Spectrom 29(2):221–233CrossRefGoogle Scholar
  49. 49.
    Waentig L, Jakubowski N, Hardt S, Scheler C, Roos PH, Linscheid MW (2012) Comparison of different chelates for lanthanide labeling of antibodies and application in a Western blot immunoassay combined with detection by laser ablation (LA-) ICP-MS. J Anal At Spectrom 27:9CrossRefGoogle Scholar
  50. 50.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler's guide to cytometry. Trends Immunol 33(7):323–332CrossRefGoogle Scholar
  51. 51.
    Lou XD, Zhang GH, Herrera I, Kinach O, Ornatsky O, Baranov V, Nitz M, Winnik MA (2007) Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed 46(32):6111–6114CrossRefGoogle Scholar
  52. 52.
    Tanner SD, Bandura DR, Ornatsky O, Baranov VI, Nitz M, Winnik MA (2008) Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl Chem 80(12):2627–2641CrossRefGoogle Scholar
  53. 53.
    Terenghi M, Elviri L, Careri M, Mangia A, Lobinski R (2009) Multiplexed determination of protein biomarkers using metal-tagged antibodies and size exclusion chromatography-inductively coupled plasma mass spectrometry. Anal Chem 81(22):9440–9448. doi:10.1021/Ac901853g CrossRefGoogle Scholar
  54. 54.
    de Bang TC, Pedas P, Schjoerring JK, Jensen PE, Husted S (2013) Multiplexed quantification of plant thylakoid proteins on Western blots using lanthanide-labeled antibodies and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Anal Chem 85(10):5047–5054. doi:10.1021/ac400561q CrossRefGoogle Scholar
  55. 55.
    Mueller L, Mairinger T, Hermann G, Koellensperger G, Hann S (2014) Characterization of metal-tagged antibodies used in ICP-MS-based immunoassays. Anal Bioanal Chem 406(1):163–169Google Scholar
  56. 56.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou XD, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822. doi:10.1021/Ac901049w CrossRefGoogle Scholar
  57. 57.
    Ornatsky OI, Lou X, Nitz M, Schaefer S, Sheldrick WS, Baranov VI, Bandura DR, Tanner SD (2008) Study of Cell Antigens and Intracellular DNA by Identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal Chem 80(7):2539–2547CrossRefGoogle Scholar
  58. 58.
    Bendall SC, Simonds EF, Qiu P, Amir EAD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696. doi:10.1126/science.1198704 CrossRefGoogle Scholar
  59. 59.
    Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891. doi:10.1038/nbt.1991 CrossRefGoogle Scholar
  60. 60.
    Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, Simonds EF, Bendall SC, Sachs K, Krutzik PO, Nolan GP (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30(9):858–U889. doi:10.1038/nbt.2317 CrossRefGoogle Scholar
  61. 61.
    Zivanovic N, Jacobs A, Bodenmiller B (2013) A Practical Guide to Multiplexed Mass CytometryGoogle Scholar
  62. 62.
    Behbehani GK, Bendall SC, Clutter MR, Fantl WJ, Nolan GP (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81A(7):552–566. doi:10.1002/cyto.a.22075 CrossRefGoogle Scholar
  63. 63.
    Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81A(6):467–475. doi:10.1002/cyto.a.22067 CrossRefGoogle Scholar
  64. 64.
    Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, Bendall S, Spitzer M, Nolan G, Kobayashi K, von Boehmer H, Mathis D, Benoist C, Best AJ, Knell J, Goldrath A, Jojic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Rao TN, Wagers A, Rothamel K, Ortiz-Lopez A, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, Laidlaw D, Collins J, Gazit R, Rossi DJ, Malhotra N, Sylvia K, Kang J, Fletcher A, Elpek K, Bellemare-Pelletier A, Malhotra D, Turley S, Immunological Genome C (2013) The transcriptional landscape of alpha beta T cell differentiation. Nat Immunol 14(6):619–632. doi:10.1038/ni.2590 CrossRefGoogle Scholar
  65. 65.
    De J, Shah NP, Ballentine CT, Maecker HT (2013) High-dimensional mass cytometry analysis reveals differential STAT activation in cellular subsets of chronic myelogenous leukemia. Lab Investig 93:441A–441AGoogle Scholar
  66. 66.
    Lee D, Martinez S, Senyukov V, Emanuel P, Liu YY (2013) High-dimension single-cell mass cytometry and colony-forming assays to determine the susceptibility of juvenile myelomonocytic leukemia to NK cell immunotherapy. Pediatr Blood Cancer 60:S41–S41CrossRefGoogle Scholar
  67. 67.
    Fisher DAC, Simonds EF, Behbehani GK, Nolan GP, Bendall SC, Oh ST (2012) Single cell mass cytometry of dysregulated signaling networks in myeloproliferative neoplasms and secondary acute myeloid leukemia. Blood 120 (21):Meeting Abstract 703Google Scholar
  68. 68.
    Fragiadakis G, Gaudilliere B, Angst M, Nolan G (2013) Single cell mass cytometry of human peripheral blood reveals an endogenous immune response to surgical trauma. J Immunol 190:Meeting Abstract P1144Google Scholar
  69. 69.
    Wang LL, Abbasi F, Ornatsky O, Cole KD, Misakian M, Gaigalas AK, He HJ, Marti GE, Tanner S, Stebbings R (2012) Human CD4(+) lymphocytes for antigen quantification: characterization using conventional flow cytometry and mass cytometry. Cytometry A 81A(7):567–575. doi:10.1002/cyto.a.22060 CrossRefGoogle Scholar
  70. 70.
    Sen N, Mukherjee G, Bendall SC, Sen A, Jager A, Sung P, Nolan GP, Johnstone I, Arvin AM (2013) Multiparametric high dimensional analysis of normal and VZV infected human tonsil T cells at a single cell resolution by mass cytometry. Cytokine 63(3):298–298. doi:10.1016/j.cyto.2013.06.236 Google Scholar
  71. 71.
    Newell EW, Sigal N, Nair N, Kidd BA, Greenberg HB, Davis MM (2013) Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol 31(7):623–629. doi:10.1038/nbt.2593 CrossRefGoogle Scholar
  72. 72.
    Lin DX, Piard-Ruster K, Esquivel C, Martinez O, Maecker H (2013) T cell responses to Epstein-Barr virus infections in pediatric organ transplant recipients. J Immunol 190Google Scholar
  73. 73.
    Spitzer M, Hotson A, Bendall S, Engleman E, Nolan G (2013) Systematically defining murine immunity at the phenotypic and functional levels via mass cytometry. J Immunol 190:Meeting Abstract P3283Google Scholar
  74. 74.
    Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA (2013) Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 5(208)Google Scholar
  75. 75.
    Piard-Ruster K, Krams S, Esquivel C, Martinez O (2013) Cytometry time of flight (CyTOF) analysis of Epstein-Barr virus-specific T cells in pediatric liver transplant recipients. Am J Transplant 13:287–287Google Scholar
  76. 76.
    Agnetti G (2012) Mass spectrometry goes with the flow: mass cytometry and its potentials in regenerative medicine. Circ Cardiov Genet 5(3):379–380. doi:10.1161/circgenetics.112.963694 CrossRefGoogle Scholar
  77. 77.
    Bjornson ZB, Nolan GP, Fantl WJ (2013) Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol 25(4):484–494CrossRefGoogle Scholar
  78. 78.
    Giesen C, Waentig L, Mairinger T, Drescher D, Kneipp J, Roos PH, Panne U, Jakubowski N (2011) Iodine as an elemental marker for imaging of single cells and tissue sections by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 26(11):2160–2165. doi:10.1039/c1ja10227c CrossRefGoogle Scholar
  79. 79.
    Waentig L, Jakubowski N, Hayen H, Roos PH (2011) Iodination of proteins, proteomes, and antibodies with potassium triodide for LA-ICP-MS based proteomic analyses. J Anal At Spectrom 26(8):1610–1618. doi:10.1039/c1ja10090d CrossRefGoogle Scholar
  80. 80.
    Becker JS, Gorbunoff A, Zoriy M, Izmer A, Kayser M (2006) Evidence of near-field laser ablation inductively coupled plasma mass spectrometry (NF-LA-ICP-MS) at nanometre scale for elemental and isotopic analysis on gels and biological samples. J Anal At Spectrom 21(1):19–25. doi:10.1039/B514401a CrossRefGoogle Scholar
  81. 81.
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, Liu SD, Zhao S, Natkunam Y, Nolan GP (2014) Nat Med 20:436–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Larissa Mueller
    • 1
  • Heike Traub
    • 1
  • Norbert Jakubowski
    • 1
  • Daniela Drescher
    • 1
    • 2
  • Vladimir I. Baranov
    • 3
  • Janina Kneipp
    • 1
    • 2
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
  3. 3.DVS Sciences Inc.MarkhamCanada

Personalised recommendations