Skip to main content
Log in

Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal—i.e. only trapping is achieved, with aggregation of the beads—or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL (2012) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472

    Article  Google Scholar 

  2. Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82(12):4830–4847

    Article  CAS  Google Scholar 

  3. Alegret S (2003) Integrated analytical systems, vol XXXIX. Comprehensive Analytical Chemistry. Elsevier, Amsterdam

  4. Gehring AG, Tu S-I (2011) High-throughput biosensors for multiplexed food-borne pathogen detection. Annu Rev Anal Chem 4(1):151–172

    Article  CAS  Google Scholar 

  5. Liébana S, Lermo A, Campoy S, Cortés MP, Alegret S, Pividori MI (2009) Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosens Bioelectron 25(2):510–513

    Article  Google Scholar 

  6. van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ (2014) Integrated lab-on-chip biosensing systems based on magnetic particle actuation—a comprehensive review. Lab Chip 14(12):1966–1986

    Article  Google Scholar 

  7. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  CAS  Google Scholar 

  8. Choi J-W, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, Helmicki AJ, Henderson HT, Ahn CH (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2(1):27–30

    Article  CAS  Google Scholar 

  9. Laczka O, Maesa J-M, Godino N, del Campo J, Fougt-Hansen M, Kutter JP, Snakenborg D, Muñoz-Pascual F-X, Baldrich E (2011) Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosens Bioelectron 26(8):3633–3640

    Article  CAS  Google Scholar 

  10. Shikida M, Takayanagi K, Honda H, Ito H, Sato K (2006) Development of an enzymatic reaction device using magnetic bead-cluster handling. J Micromech Microeng 16(9):1875

    Article  Google Scholar 

  11. Sen A, Harvey T, Clausen J (2011) A microsystem for extraction, capture and detection of E-Coli O157:H7. Biomed Microdevices 13(4):705–715

    Article  Google Scholar 

  12. Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8(12):2188–2196

    Article  CAS  Google Scholar 

  13. Saville SL, Woodward RC, House MJ, Tokarev A, Hammers J, Qi B, Shaw J, Saunders M, Varsani RR, St Pierre TG, Mefford OT (2013) The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles. Nanoscale 5(5):2152–2163

    Article  CAS  Google Scholar 

  14. Yeap SP, Ahmad AL, Ooi BS, Lim J (2012) Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28(42):14878–14891

    Article  CAS  Google Scholar 

  15. Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110–3117

    Article  CAS  Google Scholar 

  16. Vojtíšek M, Iles A, Pamme N (2010) Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles. Biosens Bioelectron 25(9):2172–2176

    Article  Google Scholar 

  17. Karle M, Miwa J, Czilwik G, Auwarter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290

    Article  CAS  Google Scholar 

  18. Sasso L, Johnston I, Zheng M, Gupte R, Ündar A, Zahn J (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612

    Article  CAS  Google Scholar 

  19. Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS (2009) Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip 9(14):1997–2002

    Article  CAS  Google Scholar 

  20. Ramadan Q, Gijs MAM (2011) Simultaneous sample washing and concentration using a “trapping-and-releasing” mechanism of magnetic beads on a microfluidic chip. Analyst 136(6):1157–1166

    Article  CAS  Google Scholar 

  21. Verbarg J, Kamgar-Parsi K, Shields AR, Howell PB, Ligler FS (2012) Spinning magnetic trap for automated microfluidic assay systems. Lab Chip

  22. Herrmann M, Veres T, Tabrizian M (2006) Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Lab Chip 6(4):555

    Article  CAS  Google Scholar 

  23. Herrmann M, Roy E, Veres T, Tabrizian M (2007) Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab Chip 7(11):1546

    Article  CAS  Google Scholar 

  24. Herrmann M, Veres T, Tabrizian M (2008) Quantification of low-picomolar concentrations of TNF-α in serum using the dual-network microfluidic ELISA platform. Anal Chem 80(13):5160–5167

    Article  CAS  Google Scholar 

  25. Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486

    Article  CAS  Google Scholar 

  26. Mukhopadhyay R (2007) When PDMS isn’t the best. Anal Chem 79(9):3248–3253

    Article  CAS  Google Scholar 

  27. Feng P (1995) Escherichia coli serotype O157:H7: novel vehicles of infection and emergence of phenotypic variants. Emerging Infect Dis 1(2):47–52

    Article  CAS  Google Scholar 

  28. Centers for Disease Control and Prevention () Reports of Selected E. coli Outbreak Investigations. http://www.cdc.gov/ecoli/outbreaks.html. Accessed 11 Dec 2013

  29. Keene WE, McAnulty JM, Hoesly FC, Williams LP, Hedberg K, Oxman GL, Barrett TJ, Pfaller MA, Fleming DW (1994) A swimming-associated outbreak of hemorrhagic colitis caused by Escherichia coli O157:H7 and Shigella Sonnei. New Engl J Med 331(9):579–584

    Article  CAS  Google Scholar 

  30. Ymbern O, Sandez N, Calvo-Lopez A, Puyol M, Alonso-Chamarro J (2014) Gas diffusion as a new fluidic unit operation for centrifugal microfluidic platforms. Lab Chip 14(5):1014–1022

    Article  CAS  Google Scholar 

  31. Gomez-de Pedro S, Puyol M, Izquierdo D, Salinas I, de la Fuente JM, Alonso-Chamarro J (2012) A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization. Nanoscale 4(4):1328–1335

    Article  CAS  Google Scholar 

  32. Baldrich E, Vigués N, Mas J, Muñoz FX (2008) Sensing bacteria but treating them well: determination of optimal incubation and storage conditions. Anal Biochem 383(1):68–75

    Article  CAS  Google Scholar 

  33. Nunes P, Ohlsson P, Ordeig O, Kutter J (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid 9(2–3):145–161

    Article  CAS  Google Scholar 

  34. Fonnum G, Johansson C, Molteberg A, Mørup S, Aksnes E (2005) Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J Magn Magn Mater 293(1):41–47

    Article  CAS  Google Scholar 

  35. De Las Cuevas G, Faraudo J, Camacho J (2008) Low-gradient magnetophoresis through field-induced reversible aggregation. J Phys Chem C 112(4):945–950

    Article  Google Scholar 

  36. Faraudo J, Andreu JS, Camacho J (2013) Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter 9(29):6654–6664

    Article  CAS  Google Scholar 

  37. Andreu JS, Barbero P, Camacho J, Faraudo J (2012) Simulation of magnetophoretic separation processes in dispersions of superparamagnetic nanoparticles in the noncooperative regime. J Nanomater 2012:10

    Google Scholar 

  38. Perez-Toralla K, Champ J, Mohamadi MR, Braun O, Malaquin L, Viovy J-L, Descroix S (2013) New non-covalent strategies for stable surface treatment of thermoplastic chips. Lab Chip 13(22):4409–4418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministerio de Economía y Competitividad and FEDER (project CTQ2012-36165) and the Government of Catalonia (SGR 2009–0323 and scholarship FI-DGR 2012, co-funded by the ESF). The authors thank D. Izquierdo and I. Garcés for the development of the optical detection system, Prof. J. Mas for the use of the microbiology facilities, and N. Vigués, F. Pujol and N. Tomás for helpful discussion and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Puyol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 451 kb)

(MPG 1.77 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berenguel-Alonso, M., Granados, X., Faraudo, J. et al. Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip . Anal Bioanal Chem 406, 6607–6616 (2014). https://doi.org/10.1007/s00216-014-8100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8100-5

Keywords

Navigation