Skip to main content

Advertisement

Log in

A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ ex/λ em), and linearity of 3 × 10−9–5 × 10−6 g mL−1 BPA, a limit of detection of 1.7 × 10−9 g mL−1 BPA (3σ), and a relative standard deviation of 2.4 % (n = 5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures.

EW eixcation of BPA immobilized in MIP on the fiber core surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yin H, Napolitano S, Schönhals A (2012) Molecular mobility and glass transition of thin films of poly(bisphenol A carbonate). Macromolecules 45:1652–1662

    Article  CAS  Google Scholar 

  2. Tripathy R, Ojha U, Faust R (2011) Polyisobutylene modified bisphenol A diglycidyl ether based epoxy resins possessing improved mechanical properties. Macromolecules 44:6800–6809

    Article  CAS  Google Scholar 

  3. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455

    Article  CAS  Google Scholar 

  4. Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45:9372–9379

    Article  CAS  Google Scholar 

  5. Meeker JD, Calafat AM, Hauser R (2010) Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol 44:1458–1463

    Article  CAS  Google Scholar 

  6. Safe SH (2000) Endocrine disruptors and human health—is there a problem? An update. Environ Health Perspect 108:487–493

    CAS  Google Scholar 

  7. Cao XL, Corriveau J (2008) Migration of bisphenol A from polycarbonate baby and water bottles into water under severe conditions. J Agric Food Chem 56:6378–6381

    Article  CAS  Google Scholar 

  8. Cooper JE, Kendig EL, Belcher SM (2011) Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere 85:943–947

    Article  CAS  Google Scholar 

  9. Cao XL, Corriveau J, Popovic S (2009) Migration of bisphenol A from can coatings to liquid infant formula during storage at room temperature. J Food Prot 72:2571–2574

    CAS  Google Scholar 

  10. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177

    Article  CAS  Google Scholar 

  11. Liao C, Kannan K (2011) High levels of bisphenol A in paper currencies from several countries, and implications for dermal exposure. Environ Sci Technol 45:6761–6768

    Article  CAS  Google Scholar 

  12. Commission E (2004) Commission Directive 2004/19/EC of 1 March 2004 amending Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with foodstuffs. Off J Eur Union L 71:8–21

    Google Scholar 

  13. Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, Maghuin-Rogister G, Pironnet AM, Pussemier L, Scippo ML, Van Loco J, Covaci A (2012) A review of dietary and nondietary exposure to bisphenol-A. Food Chem Toxicol 50:3725–3740

    Article  CAS  Google Scholar 

  14. Commission E (2011) Commission Directive 2011/8/EU amending Directive 2002/72/EC as regards the restriction of use of bisphenol A in plastic infant feeding bottles. Off J Eur Union L 25:11–14

    Google Scholar 

  15. US Food and Drug Administration (2012) Bisphenol A (BPA): use in food contact application. http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm064437.htm. Accessed 25 Dec 2012

  16. National Conference of State Legislatures (2012) NCSL policy update: state restrictions on bisphenol A (BPA) in consumer products. http://www.ncsl.org/issues-research/env-res/policy-update-on-state-restrictions-on-bisphenol-a.aspx. Accessed 5 Dec 2012

  17. Mudiam MKR, Jain R, Dua VK, Singh AK, Sharma VP, Murthy RC (2011) Application of ethyl chloroformate derivatization for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol-A in water and milk samples. Anal Bioanal Chem 401:1699–1705

    Article  CAS  Google Scholar 

  18. Lu J, Wu J, Stoffella PJ, Wilson PC (2012) Isotope dilution-gas chromatography/mass spectrometry method for the analysis of alkylphenols, bisphenol A, and estrogens in food crops. J Chromatogr A 1258:128–135

    Article  CAS  Google Scholar 

  19. Yazdinezhad SR, Ballesteros-Gómez A, Lunar L, Rubio S (2013) Single-step extraction and cleanup of bisphenol A in soft drinks by hemimicellar magnetic solid phase extraction prior to liquid chromatography/tandem mass spectrometry. Anal Chim Acta 778:31–37

    Article  CAS  Google Scholar 

  20. Salgueiro-González N, Concha-Grá E, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2012) Determination of alkylphenols and bisphenol A in seawater samples by dispersive liquid-liquid microextraction and liquid chromatography tandem mass spectrometry for compliance with environmental quality standards (Directive 2008/105/EC). J Chromatogr A 1223:1–8

    Article  CAS  Google Scholar 

  21. Liu S, Xie Q, Chen J, Sun J, He H, Zhang X (2013) Development and comparison of two dispersive liquid-liquid microextraction techniques coupled to high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils. J Chromatogr A 1295:16–23

    Article  CAS  Google Scholar 

  22. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Analytical methods for the determination of bisphenol A in food J. Chromatogr A 449:449–469

    Article  CAS  Google Scholar 

  23. Molina-García L, Córdova MLF-d, Ruiz-Medina A (2012) Analysis of bisphenol A in milk by using a multicommuted fluorimetric sensor. Talanta 96:195–201

    Article  CAS  Google Scholar 

  24. Maroto A, Kissingou P, Diascorn A, Benmansour B, Deschamps L, Stephan L, Cabon J-Y, Giamarchi P (2011) Direct laser photo-induced fluorescence determination of bisphenol A. Anal Bioanal Chem 401:3011–3017

    Article  CAS  Google Scholar 

  25. Hegnerová K, Piliarik M, Šteinbachová M, Flegelová Z, Černohorská H, Homola J (2010) Detection of bisphenol A using a novel surface plasmon resonance biosensor. Anal Bioanal Chem 398:1963–1966

    Article  CAS  Google Scholar 

  26. Mei S, Wu D, Jiang M, Lu B, Lim JM, Zhou YK, Lee YI (2011) Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem J 98:150–155

    Article  CAS  Google Scholar 

  27. Zheng Z, Du Y, Wang Z, Feng Q, Wang C (2013) Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Analyst 138:693–701

    Article  CAS  Google Scholar 

  28. Qu Y, Ma M, Wang Z, Zhan G, Li B, Wang X, Fang H, Zhang H, Li C (2013) Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface. Biosens Bioelectron 44:85–88

    Article  CAS  Google Scholar 

  29. Li Y, Gao Y, Cao Y, Li H (2012) Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE. Sens Actuators B Chem 172:726–733

    Article  CAS  Google Scholar 

  30. Sun P, Wu Y (2013) An amperometric biosensor based on human cytochrome P450 2C9 in polyacrylamide hydrogel films for bisphenol A determination. Sens Actuators B Chem 178:113–118

    Article  CAS  Google Scholar 

  31. Portaccio M, Di Tuoro D, Arduini F, Lepore M, Mita D, Diano N, Mita L, Moscone D (2010) A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron 25:2003–2008

    Article  CAS  Google Scholar 

  32. Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 14:4329–4332

    Article  Google Scholar 

  33. Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    Article  CAS  Google Scholar 

  34. Piletska EV, Burns R, Terry LA, Piletsky SA (2012) Application of a molecularly imprinted polymer for the extraction of kukoamine A from potato peels. J Agric Food Chem 60:95–99

    Article  CAS  Google Scholar 

  35. Ke Y, Zhu F, Zeng F, Luan T, Su C, Ouyang G (2013) Preparation of graphene-coated solid-phase microextraction fiber and its application on organochlorine pesticides determination. J Chromatogr A 1300:187–192

    Article  CAS  Google Scholar 

  36. Hoshino Y, Koide H, Urakami T, Kanazawa H, Kodama T, Oku N, Shea KJ (2010) Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 132:6644–6645

    Article  CAS  Google Scholar 

  37. Li J, Li Y, Zhang Y, Wei G (2012) Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Anal Chem 84:1888–1893

    Article  CAS  Google Scholar 

  38. Orozco J, Cortés A, Cheng G, Sattayasamitsathit S, Gao W, Feng X, Shen Y, Wang J (2013) Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J Am Chem Soc 135:5336–5339

    Article  CAS  Google Scholar 

  39. Pietrzyk A, Kutner W, Chitta R, Zandler ME, Souza FD, Sannicolò F, Mussini PR (2009) Melamine acoustic chemosensor based on molecularly imprinted polymer film. Anal Chem 81:10061–10070

    Article  CAS  Google Scholar 

  40. Hong CC, Chang PH, Lin CC, Hong CL (2010) A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol. Biosens Bioelectron 25:2058–2064

    Article  CAS  Google Scholar 

  41. Hiratsuka Y, Funaya N, Matsunaga H, Haginaka J (2013) Preparation of magnetic molecularly imprinted polymers for bisphenol A and its analogues and their application to the assay of bisphenol A in river water. J Pharm Biomed Anal 75:180–185

    Article  CAS  Google Scholar 

  42. Alexiadou DK, Maragou NC, Thomaidis NS, Theodoridis GA, Koupparis MA (2008) Molecularly imprinted polymers for bisphenol A for HPLC and SPE from water and milk. J Sep Sci 31:2272–2282

    Article  CAS  Google Scholar 

  43. Wang Y, Yang Y, Xu L, Zhang J (2011) Bisphenol A sensing based on surface molecularly imprinted, ordered mesoporous silica. Electrochim Acta 56:2105–2109

    Article  CAS  Google Scholar 

  44. Fuchs Y, Linares AV, Mayes AG, Haupt K, Soppera O (2011) Ultrathin selective molecularly imprinted polymer microdots obtained by evanescent wave photopolymerization. Chem Mater 23:3645–3651

    Article  CAS  Google Scholar 

  45. Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New York

    Google Scholar 

  46. Ge Z, Brown CW, Sun L, Yang SC (1993) Fiber-optic pH sensor based on evanescent wave absorption spectroscopy. Anal Chem 65:2335–2338

    Article  CAS  Google Scholar 

  47. Vogt F, Karlowatz M, Jakusch M, Mizaikoff B (2003) The automated sample preparation system MixMaster for investigation of volatile organic compounds with mid-infrared evanescent wave spectroscopy. Analyst 128:397–403

    Article  CAS  Google Scholar 

  48. Xiong Y, Zhu D, Duan C, Wang J, Guan Y (2010) Small-volume fiber-optic evanescent-wave absorption sensor for nitrite determination. Anal Bioanal Chem 396:943–948

    Article  CAS  Google Scholar 

  49. Xiong Y, Ye Z, Xu J, Zhu Y, Chen C, Guan Y (2013) Integrated micro-volume fiber-optic sensor for oxygen determination in exhaled breath based on iridium(III) complexes immobilized in fluorinated xerogels. Analyst 138:1819–1827

    Article  CAS  Google Scholar 

  50. Xiong Y, Huang Y, Ye Z, Guan Y (2011) Flow injection small-volume fiber-optic pH sensor based on evanescent wave excitation and fluorescence determination. J Fluoresc 21:1137–1142

    Article  CAS  Google Scholar 

  51. Yamamoto H, Liljestrand HM (2004) Partitioning of selected estrogenic compounds between synthetic membrane vesicles and water: effects of lipid components. Environ Sci Technol 38:1139–1147

    Article  CAS  Google Scholar 

  52. Xue J, Li D, Qu L, Long Y (2013) Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal Chim Acta 777:57–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Open Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) (grant no. PLN 1313), the Foundation of Sichuan Educational Committee (no. 14ZB0048) the School Technology Fund of Southwest Petroleum University (grant no. 2013XJZ015), SWPU Pollution Control of Oil & Gas Fields Science & Technology Innovation Youth Team (no. 2013XJZT003), and the Research Project of General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (no. 2013IK168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Ye, Z., Xu, J. et al. A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination. Anal Bioanal Chem 406, 2411–2420 (2014). https://doi.org/10.1007/s00216-014-7664-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7664-4

Keywords

Navigation