Skip to main content

Advertisement

Log in

Measuring the electron affinity of organic solids: an indispensable new tool for organic electronics

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electron affinity is a fundamental energy parameter of materials. In organic semiconductors, the electron affinity is closely related to electron conduction. It is not only important to understand fundamental electronic processes in organic solids, but it is also indispensable for research and development of organic semiconductor devices such as organic light-emitting diodes and organic photovoltaic cells. However, there has been no experimental technique for examining the electron affinity of organic materials that meets the requirements of such research. Recently, a new method, called low-energy inverse-photoemission spectroscopy, has been developed. A beam of low-energy electrons is focused onto the sample surface, and photons emitted owing to the radiative transition to unoccupied states are then detected. From the onset of the spectral intensity, the electron affinity is determined within an uncertainty of 0.1 eV. Unlike in conventional inverse-photoemission spectroscopy, sample damage is negligible and the resolution is improved by a factor of 2. The principle of the method and several applications are reported.

Energy level diagram of low-energy inverse photoemission spectroscopy, LEIPS (left). A beam of low-energy electrons with the kinetic energy E k is focused onto the sample surface, and photons emitted owing to the radiative transition to unoccupied states are detected. From the onset of the spectral intensity, the electron affinity E A is determined. The electron affinities of typical organic semiconductors determined using LEIPS (right).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In organic semiconductors, the valence states (unoccupied states) correspond to the valence bands (conduction bands) in inorganic semiconductors. Since the edges of the valence states (unoccupied states) originate from the highest occupied molecular orbital, HOMO, (the lowest unoccupied molecular orbital, LUMO) of the constituent molecules, they are often referred to the HOMO level (LUMO level).

  2. Strictly speaking, the energy released depends on the timescale. On the timescale of the processes in IPES, only the electronic process is usually considered.

References

  1. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, New York

    Google Scholar 

  2. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, New York

    Google Scholar 

  3. Akamatu H, Inokuchi H (1950) On the electrical conductivity of violanthrone, iso-violanthrone, and pyranthrone. J Chem Phys 18(6):810–811

    Article  CAS  Google Scholar 

  4. Eley DD (1948) Phthalocyanines as semiconductors. Nature 162(4125):819–819

    Article  CAS  Google Scholar 

  5. Vartanyan AT (1948) Poluprovodnikovye Svoistva Organicheskikh Krasitelei .1. Ftalotsianiny. Zh Fiz Khim 22(7):769–782

    CAS  Google Scholar 

  6. Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Article  CAS  Google Scholar 

  7. Tang CW (1986) 2-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185

    Article  CAS  Google Scholar 

  8. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables (version 39). Prog Photovoltaics 20(1):12–20

    Google Scholar 

  9. Fuggle JC, Inglesfield JE (1992) Unoccupied electronic states - fundamentals for XANES, EELS, IPS and BIS - introduction. Top Appl Phys 69:1–23

    Article  CAS  Google Scholar 

  10. Seki K, Kanai K (2006) Development of experimental methods for determining the electronic structure of organic materials. Mol Cryst Liq Cryst 455:145–181

    Article  CAS  Google Scholar 

  11. Bredas JL, Cornil J, Heeger AJ (1996) The exciton binding energy in luminescent conjugated polymers. Adv Mater 8(5):447–452

    Article  CAS  Google Scholar 

  12. Hill IG, Kahn A, Soos ZG, Pascal RA (2000) Charge-separation energy in films of pi-conjugated organic molecules. Chem Phys Lett 327(3–4):181–188

    Google Scholar 

  13. Johnson PD, Hulbert SL (1990) Inverse photoemission. Rev Sci Instrum 61(9):2277–2288

    Article  CAS  Google Scholar 

  14. Hipps KW (2006) In: Vij DR (ed) Handbook of applied solid state spectroscopy. Springer, New York

    Google Scholar 

  15. Soubatch S, Weiss C, Temirov R, Tautz FS (2009) Site-specific polarization screening in organic thin films. Phys Rev Lett 102(17):177405

    Google Scholar 

  16. Pendry JB (1980) New probe for unoccupied bands at surfaces. Phys Rev Lett 45(16):1356–1358

    Article  CAS  Google Scholar 

  17. Dose V (1977) VUV isochromat spectroscopy. Appl Phys 14(1):117–118

    Article  CAS  Google Scholar 

  18. Dose V (1983) Ultraviolet Bremsstrahlung spectroscopy. Prog Surf Sci 13(3):225–284

    Article  CAS  Google Scholar 

  19. Maniraj M, D’Souza SW, Nayak J, Rai A, Singh S, Sekhar BNR, Barman SR (2011) High energy resolution bandpass photon detector for inverse photoemission spectroscopy. Rev Sci Instrum 82(9):093901

    Google Scholar 

  20. Kahn A, Koch N, Gao WY (2003) Electronic structure and electrical properties of interfaces between metals and pi-conjugated molecular films. J Polym Sci B Polym Phys 41(21):2529–2548

    Article  CAS  Google Scholar 

  21. Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10(3):515–520

    Google Scholar 

  22. Tsutsumi K, Yoshida H, Sato N (2002) Unoccupied electronic states in a hexatriacontane thin film studied by inverse photoemission spectroscopy. Chem Phys Lett 361(5–6):367–373

    Article  CAS  Google Scholar 

  23. Yoshida H (2012) Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons. Chem Phys Lett 539–540:180–185

    Article  CAS  Google Scholar 

  24. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458):1658–1660

    Google Scholar 

  25. Yoshida H (2013) Low-energy inverse photoemission spectroscopy using a high-resolution grating spectrometer in the near ultraviolet range. Rev Sci Instrum 84(10):103901

    Article  CAS  Google Scholar 

  26. Yoshida H (2014) Note: Low energy inverse photoemission spectroscopy apparatus. Rev Sci Instrum 85:016101

    Article  CAS  Google Scholar 

  27. Yoshida H, Tsutsumi K, Sato N (2001) Unoccupied electronic states of 3d-transition metal phthalocyanines (MPc: M = Mn, Fe, Co, Ni, Cu and Zn) studied by inverse photoemission spectroscopy. J Electron Spectrosc Relat Phenom 121(1–3):83–91

    Article  CAS  Google Scholar 

  28. Reimer L (1997) In: Hawkes PW (ed) Transmission electron microscopy: physics of image formation and microanalysis, Springer series in optical sciences, vol 36. Springer, Berlin

    Chapter  Google Scholar 

  29. Yoshida H (2012) New experimental method to precisely examine the LUMO levels of organic semiconductors and application to the fullerene derivatives. MRS Symp Proc 1493:295–301

    Google Scholar 

  30. Han W, Yoshida H, Ueno N, Kera S (2013) Electron affinity of pentacene thin film studied by radiation-damage free inverse photoemission spectroscopy. Appl Phys Lett 103:123303

    Google Scholar 

  31. Sato N, Seki K, Inokuchi H, Harada Y (1986) Photoemission from an amorphous pentacene film. Chem Phys 109(1):157–162

    Google Scholar 

  32. Fukagawa H, Yamane H, Kataoka T, Kera S, Nakamura M, Kudo K, Ueno N (2006) Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: hole stabilization versus band dispersion. Phys Rev B 73(24):245310

    Google Scholar 

  33. Duhm S, Heimel G, Salzmann I, Glowatzki H, Johnson RL, Vollmer A, Rabe JP, Koch N (2008) Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nat Mater 7(4):326–332

    Google Scholar 

  34. Krause S, Casu MB, Scholl A, Umbach E (2008) Determination of transport levels of organic semiconductors by UPS and IPS. New J Phys 10:085001

    Google Scholar 

  35. Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84(7):075144

    Article  CAS  Google Scholar 

  36. Silinsh EA, Belkind AI, Balode DR, Brseniece AJ, Grechov VV, Taure LF, Kurik MV, Vertzymacha JI, Bok I (1974) Photoelectrical properties, energy level spectra, and photogeneration mechanisms of pentacene. Phys Stat Sol (a) 25:339

    Google Scholar 

  37. Lang DV, Chi X, Siegrist T, Sergent AM, Ramirez AP (2004) Amorphouslike density of gap states in single-crystal pentacene. Phys Rev Lett 93(8):086802

    Google Scholar 

  38. Sebastian L, Weiser G, Bassler H (1981) Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chem Phys 61:125

    Google Scholar 

  39. Fabiano S, Yoshida H, Chen ZH, Facchetti A, Loi MA (2013) Orientation-dependent electronic structures and charge transport mechanisms in ultrathin polymeric n-channel field-effect transistors. ACS Appl Mater Interfaces 5(10):4417–4422

    Google Scholar 

  40. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Adv Mater 11(8):605–625

    Google Scholar 

  41. Braun S, Salaneck WR, Fahlman M (2009) Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater 21(14–15):1450–1472

    Article  CAS  Google Scholar 

  42. Ueno N, Kera S (2008) Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property. Prog Surf Sci 83(10–12):490–557

    Article  CAS  Google Scholar 

  43. Hoffmann R (1988) Solids and surfaces: a chemist's view of bonding in extended structures. VCH Publishers, New York

    Google Scholar 

  44. Ashcroft NW, Mermin ND (1976) Solid state physics. Thomson Learning, London

    Google Scholar 

  45. BudkeM, Renken V, LieblH, Rangelov G, DonathM (2007) Inverse photoemission with energy resolution better than 200 meV. Rev Sci Instrum 78(8):083903

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H. Measuring the electron affinity of organic solids: an indispensable new tool for organic electronics. Anal Bioanal Chem 406, 2231–2237 (2014). https://doi.org/10.1007/s00216-014-7659-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7659-1

Keywords

Navigation