Skip to main content

Ultraviolet Photoelectron Spectroscopy (UPS) I: Band Dispersion Measurements of “Insulating” Organic Single Crystals

  • Chapter
  • First Online:
Electronic Processes in Organic Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 209))

Abstract

Operation mechanisms and efficiencies of organic electronic devices are principally dominated by the electronic structures of organic semiconductor solids via charge carrier behaviors inside the active materials of the devices; that is the band dispersion for high-mobility crystalline materials being desirable to e.g. organic field effect transistor application. Angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) is one of the most direct and sophisticated techniques to access the valence band of the matters. Several essential physical properties, the effective mass of transport hole and intermolecular transfer integral, in direct relevance to the charge carrier mobility are accessible through accurate analyses of the ARUPS results. In this chapter, we describe technical essences of this methodology and introduce several examples of successful demonstrations of the valence band structures of crystalline organic semiconducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the E-k set of a photoelectron is slightly modulated during its flight from the sample toward the analyzer due to the contact potential difference. This modulation is generally sufficiently small and thus can be neglected in practice.

  2. 2.

    This approximation is valid only for estimating a necessary condition to fulfill the sufficiently small ΔV s without any sample charging. A ‘charged’ insulating sample has to be modeled as a parallel component of a resistor and capacitor rather than a single resistor if one wants to guess the magnitude of ΔV s for a certain measurement condition.

  3. 3.

    The UPS measurements are much more insensitive to structural imperfectness (such as impurities and lattice defects) than electric characterizations in general. Therefore the mobility estimated from the ARUPS results has to be regarded as that of a perfect crystal; the practical mobility exhibited by an actual sample is more or less reduced with respect to this ideal value. In fact, an experimentally observed hole mobility in a BTQBT single crystal was ~4 cm2V−1 s−1 [29] which is a little smaller than the expected value in Eq. (2.14).

  4. 4.

    For systems with a clear E-K dispersion, an energy shift in the ARUPS spectra cannot always be attributed to an E-K || dispersion singly but also may be influenced by the K cosθ component.

References

  1. K. Seki, U. Karlsson, R. Engelhardt, E. Koch, Chem. Phys. Lett. 103, 343 (1984)

    Article  ADS  Google Scholar 

  2. N. Ueno, W. Gaedeke, E.E. Koch, R. Engelhardt, R. Dudde, L. Laxhuber, H. Moehwald, J. Mol. Electron. 1, 19 (1985)

    ADS  Google Scholar 

  3. H. Fujimoto, T. Mori, H. Inokuchi, N. Ueno, K. Sugita, K. Seki, Chem. Phys. Lett. 141, 485 (1987)

    Article  ADS  Google Scholar 

  4. S. Hasegawa, T. Mori, K. Imaeda, S. Tanaka, Y. Yamashita, H. Inokuchi, H. Fujimoto, K. Seki, N. Ueno, J. Chem. Phys. 100, 6969 (1994)

    Article  ADS  Google Scholar 

  5. Y. Yamashita, S. Tanaka, K. Imaeda, H. Inokuchi, Chem. Lett. 20, 1213 (1991)

    Article  Google Scholar 

  6. H. Meier, in Organic Semiconductors, vol. 2, ed. by H.F. Ebel (Verlag Chemie, Weinheim, 1974)

    Google Scholar 

  7. O.D. Jurchescu, J. Baas, T.T.M. Palstra, Appl. Phys. Lett. 84, 3061 (2004)

    Article  ADS  Google Scholar 

  8. C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Adv. Mater. 23, 1630 (2011)

    Article  Google Scholar 

  9. N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, J. Rabe, Phys. Rev. Lett. 96, 156803 (2006)

    Article  ADS  Google Scholar 

  10. H. Yamane, D. Yoshimura, E. Kawabe, R. Sumii, K. Kanai, Y. Ouchi, N. Ueno, K. Seki, Phys. Rev. B 76, 165434 (2007)

    Article  ADS  Google Scholar 

  11. H. Yoshida, N. Sato, Phys. Rev. B 77, 235205 (2008)

    Article  ADS  Google Scholar 

  12. Y. Nakayama, J. Niederhausen, S. Machida, Y. Uragami, H. Kinjo, A. Vollmer, J.P. Rabe, N. Koch, H. Ishii, Org. Electron. 14, 1825 (2013)

    Article  Google Scholar 

  13. H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa, N. Ueno, K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007)

    Article  ADS  Google Scholar 

  14. R. Hatch, D. Huber, H. Höchst, Phys. Rev. B 80, 081411 (2009)

    Article  ADS  Google Scholar 

  15. R.C. Hatch, D.L. Huber, H. Höchst, Phys. Rev. Lett. 104, 047601 (2010)

    Article  ADS  Google Scholar 

  16. M. Ohtomo, T. Suzuki, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 95, 123308 (2009)

    Article  ADS  Google Scholar 

  17. T. Shimada, T. Suzuki, M. Ohtomo, T. Hasegawa, Hyomen Kagaku (J. Surf. Sci. Soc. Jpn. 30, 7 (2009)

    Google Scholar 

  18. N. Sato, H. Inokuchi, B. Schmid, N. Karl, J. Chem. Phys. 83, 5413 (1985)

    Article  ADS  Google Scholar 

  19. A. Vollmer, O.D. Jurchescu, I. Arfaoui, I. Salzmann, T.T.M. Palstra, P. Rudolf, J. Niemax, J. Pflaum, J.P. Rabe, N. Koch, Eur. Phys. J. E. 17339 (2005)

    Google Scholar 

  20. O.D. Jurchescu, A. Meetsma, T.T.M. Palstra, Acta Crystallogr. B Struct. Sci. 62(330) (2006)

    Google Scholar 

  21. Y. Nakayama, S. Machida, T. Minari, K. Tsukagoshi, Y. Noguchi, H. Ishii, Appl. Phys. Lett. 93, 173305 (2008)

    Article  ADS  Google Scholar 

  22. S. Machida, Y. Nakayama, S. Duhm, Q. Xin, A. Funakoshi, N. Ogawa, S. Kera, N. Ueno, H. Ishii, Phys. Rev. Lett. 104, 156401 (2010)

    Article  ADS  Google Scholar 

  23. D.A. da Silva Filho, E.-G. Kim, J.-L. Brédas, Adv. Mater. 17, 1072 (2005)

    Article  Google Scholar 

  24. Z.Q. Li, V. Podzorov, N. Sai, M.C. Martin, M.E. Gershenson, M. Di Ventra, D.N. Basov, Phys. Rev. Lett. 99, 016403 (2007)

    Article  ADS  Google Scholar 

  25. A. Vollmer, R. Ovsyannikov, M. Gorgoi, S. Krause, M. Oehzelt, A. Lindblad, N. Mårtensson, S. Svensson, P. Karlsson, M. Lundvuist, T. Schmeiler, J. Pflaum, N. Koch, J. Electron Spectros. Relat. Phenomena 185, 55 (2012)

    Article  Google Scholar 

  26. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007)

    Article  ADS  Google Scholar 

  27. Y. Nakayama, Y. Uragami, S. Machida, K.R. Koswattage, D. Yoshimura, H. Setoyama, T. Okajima, K. Mase, H. Ishii, Appl. Phys. Express 5, 111601 (2012)

    Article  ADS  Google Scholar 

  28. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Science (New York, N.Y.) 303, 1644 (2004)

    Article  ADS  Google Scholar 

  29. K. Imaeda, Y. Yamashita, Y. Li, H. Inokuchi, T. Mori, J. Mater. Chem. 2, 115 (1992)

    Article  Google Scholar 

Download references

Acknowledgement

YN would like to thank Dr. Shin’ichi Machida, Mr. Akihiro Funakoshi, Mr. Naoki Ogawa, Mr. Yuki Uragami, and Dr. Kaveenga Rasika Koswattage of Chiba University and Prof. Kazuhiko Mase of KEK (under an approval of the PF Program Advisory Committee [2011G161]) for their help during the work presented in the last part of this article. Financial supports from a Grant-in-Aid for Young Scientists B [23750209] from the Japan Society for the Promotion of Science, and G-COE Program of Chiba University (Advanced School for Organic Electronics; G-3) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nakayama, Y., Duhm, S., Xin, Q., Kera, S., Ishii, H., Ueno, N. (2015). Ultraviolet Photoelectron Spectroscopy (UPS) I: Band Dispersion Measurements of “Insulating” Organic Single Crystals. In: Ishii, H., Kudo, K., Nakayama, T., Ueno, N. (eds) Electronic Processes in Organic Electronics. Springer Series in Materials Science, vol 209. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55206-2_2

Download citation

Publish with us

Policies and ethics