Skip to main content
Log in

Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new method for the analysis of sulfonamides and tetracyclines in heterogenic biogas plant input samples and fermentation residues is introduced. Veterinary antibiotics are only partially absorbed in the animal gut; therefore, animal manure can contain high loads of these substances. Animal manure is used for biogas generation, so antibiotics can enter the anaerobic fermentation process this way. However, only little is known about the fate of antibiotics within this process, also due to the lack of suitable analytical methods for this complex sample matrix. Therefore, we developed a method for the analysis of ten sulfonamides (sulfachloropyridazine, sulfadiazine, sulfadimethoxine, sulfaguanidine, sulfamerazine, sulfamethazine, sulfamethoxazol, sulfamethoxypyridazin, sulfapyridine, sulfathiazole) and four tetracyclines (chlortetracycline, doxycycline, oxytetracycline, tetracycline) in biogas plant input and output samples, including a single liquid-liquid-extraction step and analysis via liquid chromatography (LC) and triple quadrupole mass spectrometry. The detection limit of this method ranges from 0.01 to 0.08 mg kg−1. Matrix calibration using antibiotic-free cattle feces and isotopic-labeled internal standards enables quantification of antibiotics in different matrices such as animal manure, dung, or fermenter outputs with recovery rates between 70 and 130 %. This makes the method suitable for investigating the fate of antibiotics in animal manure and fermentation processes. A screening of 15 German biogas plants revealed the presence of several antibiotics up to 9 mg kg−1 (201 mg kg−1 dry matter). During the fermentation process, elimination occurs; however, with the exception of chlortetracycline, the antibiotic content remains in the same order of magnitude.

Veterinary antibiotics can be detected in both manure and biogas plant output samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484. doi:10.1016/j.biortech.2008.12.046

    Article  CAS  Google Scholar 

  2. Kools SAE, Moltmann JF, Knacker T (2008) Estimating the use of veterinary medicines in the European union. Regul Toxicol Pharmacol 50(1):59–65. doi:10.1016/j.yrtph.2007.06.003

    Article  CAS  Google Scholar 

  3. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759. doi:10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  4. Sanz JL, Rodriguez N, Amils R (1996) The action of antibiotics on the anaerobic digestion process. Appl Microbiol Biotechnol 46(5–6):587–592

    Article  CAS  Google Scholar 

  5. Loftin KA, Henny C, Adams CD, Surampali R, Mormile MR (2005) Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate. Environ Toxicol Chem 24(4):782–788

    Article  CAS  Google Scholar 

  6. Arikan OA, Sikora LJ, Mulbry W, Khan SU, Rice C, Foster GD (2006) The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves. Process Biochem 41(7):1637–1643. doi:10.1016/j.procbio.2006.03.010

    Article  CAS  Google Scholar 

  7. Alvarez JA, Otero L, Lema JM, Omil F (2010) The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresour Technol 101(22):8581–8586. doi:10.1016/j.biortech.2010.06.075

    Article  CAS  Google Scholar 

  8. Dreher TM, Mott HV, Lupo CD, Oswald AS, Clay SA, Stone JJ (2012) Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion. Bioresour Technol 125:65–74. doi:10.1016/j.biortech.2012.08.077

    Article  CAS  Google Scholar 

  9. Ince B, Coban H, Turker G, Ertekin E, Ince O (2013) Effect of oxytetracycline on biogas production and active microbial populations during batch anaerobic digestion of cow manure. Bioproc Biosyst Eng 36(5):541–546. doi:10.1007/s00449-012-0809-y

    Article  CAS  Google Scholar 

  10. Mohring SAI, Strzysch I, Fernandes MR, Kiffmeyer TK, Tuerk J, Hamscher G (2009) Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Technol 43(7):2569–2574. doi:10.1021/Es802042d

    Article  CAS  Google Scholar 

  11. Motoyama M, Nakagawa S, Tanoue R, Sato Y, Nomiyama K, Shinohara R (2011) Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere 84(4):432–438. doi:10.1016/j.chemosphere.2011.03.048

    Article  CAS  Google Scholar 

  12. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166(2):145–167

    Article  CAS  Google Scholar 

  13. Pfeifer T, Tuerk J, Bester K, Spiteller M (2002) Determination of selected sulfonamide antibiotics and trimethoprim in manure by electrospray and atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 16(7):663–669. doi:10.1002/Rcm.624

    Article  CAS  Google Scholar 

  14. Jacobsen AM, Halling-Sorensen B (2006) Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 384(5):1164–1174. doi:10.1007/s00216-005-0261-9

    Article  CAS  Google Scholar 

  15. Ho YB, Zakaria MP, Latif PA, Saari N (2012) Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1262:160–168. doi:10.1016/j.chroma.2012.09.024

    Article  CAS  Google Scholar 

  16. Shelver WL, Varel VH (2012) Development of a UHPLC-MS/MS method for the measurement of chlortetracycline degradation in swine manure. Anal Bioanal Chem 402(5):1931–1939. doi:10.1007/s00216-011-5637-4

    Article  CAS  Google Scholar 

  17. Haller MY, Muller SR, McArdell CS, Alder AC, Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952(1–2):111–120

    Article  CAS  Google Scholar 

  18. Hamscher G, Sczesny S, Hoper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74(7):1509–1518. doi:10.1021/Ac015588m

    Article  CAS  Google Scholar 

  19. Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24(4):861–868

    Article  CAS  Google Scholar 

  20. Tylova T, Olsovska J, Novak P, Flieger M (2010) High-throughput analysis of tetracycline antibiotics and their epimers in liquid hog manure using Ultra Performance Liquid Chromatography with UV detection. Chemosphere 78(4):353–359. doi:10.1016/j.chemosphere.2009.11.020

    Article  CAS  Google Scholar 

  21. Durckheimer W (1975) Tetracyclines—chemistry, biochemistry, and structure-activity relations. Angew Chem Int Edit 14(11):721–734. doi:10.1002/anie.197507211

    Article  CAS  Google Scholar 

  22. Bialk-Bielinska A, Kumirska J, Palavinskas R, Stepnowski P (2009) Optimization of multiple reaction monitoring mode for the trace analysis of veterinary sulfonamides by LC-MS/MS. Talanta 80(2):947–953. doi:10.1016/j.talanta.2009.08.023

    Article  CAS  Google Scholar 

  23. Bruno F, Curini R, Di Corcia A, Nazzari M, Pallagrosi M (2002) An original approach to determining traces of tetracycline antibiotics in milk and eggs by solid-phase extraction and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 16(14):1365–1376. doi:10.1002/Rcm.724

    Article  CAS  Google Scholar 

  24. Pozo OJ, Sancho JV, Ibanez M, Hernandez F, Niessen WMA (2006) Confirmation of organic micropollutants detected in environmental samples by liquid chromatography tandem mass spectrometry: achievements and pitfalls. TrAC Trends Anal Chem 25(10):1030–1042. doi:10.1016/j.trac.2006.06.012

    Article  CAS  Google Scholar 

  25. McCormick JRD, Fox SM, Smith LL, Bitler BA, Reichenthal J, Origoni VE, Muller WH, Winterbottom R, Doerschuk AP (1957) Studies of the reversible epimerization occurring in the tetracycline family—the preparation, properties and proof of structure of some 4-epi-tetracyclines. J Am Chem Soc 79(11):2848–2858

    Article  Google Scholar 

  26. Kennedy DG, McCracken RJ, Cannavan A, Hewitt SA (1998) Use of liquid chromatography mass spectrometry in the analysis of residues of antibiotics in meat and milk. J Chromatogr A 812(1–2):77–98. doi:10.1016/S0021-9673(98)00048-X

    Article  CAS  Google Scholar 

  27. Vartanian VH, Goolsby B, Brodbelt JS (1998) Identification of tetracycline antibiotics by electrospray ionization in a quadrupole ion trap. J Am Soc Mass Spectrom 9(10):1089–1098

    Article  CAS  Google Scholar 

  28. Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148(2):570–579. doi:10.1016/j.envpol.2006.11.035

    Article  Google Scholar 

  29. Vidoudez C, Pohnert G (2012) Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics 8(4):654–669. doi:10.1007/s11306-011-0356-6

    Article  CAS  Google Scholar 

  30. Loftin KA, Adams CD, Meyer MT, Surampalli R (2008) Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J Environ Qual 37(2):378–386. doi:10.2134/Jeq2007.0230

    Article  CAS  Google Scholar 

  31. Kleinman PJA, Wolf AM, Sharpley AN, Beegle DB, Saporito LS (2005) Survey of water-extractable phosphorus in livestock manures. Soil Sci Soc Am J 69(3):701–708. doi:10.2136/sssaj2004.0099

    Article  CAS  Google Scholar 

  32. DIN Deutsches Institut für Normung e.V., DIN 38402–51: German standard methods for the examination of water, waste water and sludge; general information (group A); calibration of analytical methods, evaluation of analytical results and linear calibration functions used to determine the performance characteristics of analytical methods (A 51)

  33. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. (2002/657/EC)

  34. Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38(4):328–334. doi:10.1016/j.clinbiochem.2004.11.007

    Article  CAS  Google Scholar 

  35. Janusch F, Kalthoff L, Hamscher G, Mohring SA (2013) Evaluation and subsequent minimization of matrix effects caused by phospholipids in LC-MS analysis of biological samples. Bioanalysis 5(17):2101–2114. doi:10.4155/bio.13.187

    Article  CAS  Google Scholar 

  36. Winckler C, Engels H, Hund-Rinke K, Luckow T, Simon M, Steffens G (2004) Verhalten von Tetrazyklinen und anderen Veterinärantibiotika in Wirtschaftsdünger und Boden. UFOPLAN 200 73 248. Umweltbundesamt, Berlin

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Federal Ministry of Education and Research (BMBF, grant 02WRS1274B). We thank Rita Kramer (Umweltbetriebsberatung Kramer) for conducting sampling at biogas plants and Anja Platt from our institute for her technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Spielmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spielmeyer, A., Ahlborn, J. & Hamscher, G. Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 406, 2513–2524 (2014). https://doi.org/10.1007/s00216-014-7649-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7649-3

Keywords

Navigation