Skip to main content
Log in

Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

We introduce a rigorously validated protocol based on extraction, derivatisation and GC/MS for the analysis of diatom metabolomes. Using this methodology we characterised general patterns of the metabolism of the diatom Skeletonema marinoi during different growth phases. Canonical analysis of principal coordinate revealed clearly that the intracellular metabolites differ between exponential, stationary and declining phase. In addition, diurnal variation during the exponential phase was observed. A detailed analysis of the metabolic changes is presented and discussed in the context of previous physiological studies of diatoms. The observed variability in metabolites has a significant consequence for further physiological and ecological studies. Investigations have to take into account that diatom metabolism is a highly dynamic process and that food quality, chemical defence and also the production of signal molecules might be dependent on different growth phases or diurnal variations. The introduced protocol is in general suitable for the monitoring of microalgae and has also the potential to be applied to complex plankton communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Admiraal, W., Peletier, H., & Laane, R. W. P. M. (1986). Nitrogen metabolism of marine planktonic diatoms; excretion, assimilation and cellular pools of free amino acids in seven species with different cell size. Journal of Experimental Marine Biology and Ecology, 98, 241–263.

    Article  CAS  Google Scholar 

  • Allen, A. E., LaRoche, J., Maheswari, U., Lommer, M., Schauer, N., Lopez, P. J., et al. (2008). Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10438–10443.

    Article  PubMed  CAS  Google Scholar 

  • Amsler, C. D., & Fairhead, V. A. (2005). Defensive and sensory chemical ecology of brown algae. Advances in Botanical Research, 43, 1–91.

    Article  Google Scholar 

  • Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology, 84, 511–525.

    Article  Google Scholar 

  • Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., et al. (2004). The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science, 306, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Ausloos, P., Clifton, C. L., Lias, S. G., Mikaya, A. I., Stein, S. E., Tchekhovskoi, D. V., et al. (1999). The critical evaluation of a comprehensive mass spectral library. Journal of the American Society for Mass Spectrometry, 10, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Ballestar, E., Abad, C., & Franco, L. (1996). Core histones are glutaminyl substrates for tissue transglutaminase. Journal of Biological Chemistry, 271, 18817–18824.

    Article  PubMed  CAS  Google Scholar 

  • Barofsky, A., Simonelli, P., Vidoudez, C., Troedsson, C., Nejstgaard, J. C., Jakobsen, H. H., et al. (2010). Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. Journal of Plankton Research, 32, 263–272.

    Article  CAS  Google Scholar 

  • Barofsky, A., Vidoudez, C., & Pohnert, G. (2009). Metabolic profiling reveals growth stage variability in diatom exudates. Limnology and Oceanography: Methods, 7, 382–390.

    Article  CAS  Google Scholar 

  • Berge, J. P., Gouygou, J. P., Dubacq, J. P., & Durand, P. (1995). Reassessment of lipid composition of the diatom, Skeletonema costatum. Phytochemistry, 39, 1017–1031.

    Article  CAS  Google Scholar 

  • Bolling, C., & Fiehn, O. (2005). Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiology, 139, 1995–2005.

    Article  PubMed  Google Scholar 

  • Brown, K. L., Twing, K. I., & Robertson, D. L. (2009). Unraveling the regulation of nitrogen assimilation in the marine diatom Thalassiosira pseudonana (Bacillariophyceae): Diurnal variations in transcript levels for five genes involved in nitrogen assimilation. Journal of Phycology, 45, 413–426.

    Article  CAS  Google Scholar 

  • Collos, Y. (1998). Nitrate uptake, nitrite release and uptake, and new production estimates. Marine Ecology Progress Series, 171, 293–301.

    Article  CAS  Google Scholar 

  • Diekmann, A. B. S., Peck, M. A., Holste, L., St John, M. A., & Campbell, R. W. (2009). Variation in diatom biochemical composition during a simulated bloom and its effect on copepod production. Journal of Plankton Research, 31, 1391–1405.

    Article  CAS  Google Scholar 

  • Eppley, R. W., & Renger, E. H. (1974). Nitrogen assimilation of an oceanic diatom in nitrogen-limited continuous culture. Journal of Phycology, 10, 23.

    Google Scholar 

  • Fiehn, O. (2007). Validated high quality automated metabolome analysis of Araidopsis thaliana leaf disks. In B. Nikolau & E. Wurtele (Eds.), Concepts in plant metabolomics. New York: Springer.

    Google Scholar 

  • Fiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., et al. (2007). The metabolomics standards initiative (MSI). Metabolomics, 3, 175–178.

    Article  CAS  Google Scholar 

  • Granum, E., Kirkvold, S., & Myklestad, S. M. (2002). Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: Diel variations and effects of N depletion. Marine Ecology Progress Series, 242, 83–94.

    Article  CAS  Google Scholar 

  • Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331, 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45, 160–186.

    Article  PubMed  CAS  Google Scholar 

  • Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., et al. (2004). Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 429, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Jiye, A., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., et al. (2005). Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 77, 8086–8094.

    Article  Google Scholar 

  • Kanani, H. H., & Klapa, M. I. (2007). Data correction strategy for metabolomics analysis using gas chromatography-mass spectrometry. Metabolic Engineering, 9, 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Kluender, C., Sans-Piche, F., Riedl, J., Altenburger, R., Hartig, C., Laue, G., et al. (2009). A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. Metabolomics, 5, 59–71.

    Article  CAS  Google Scholar 

  • Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 2006(78), 1272–1281.

    Article  Google Scholar 

  • Kolber, Z., Zehr, J., & Falkowski, P. (1988). Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology, 88(3), 923–929.

    Article  PubMed  CAS  Google Scholar 

  • Krell, A., Funck, D., Plettner, I., John, U., & Dieckmann, G. (2007). Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Journal of Phycology, 43, 753–762.

    Article  CAS  Google Scholar 

  • Kröger, N., Deutzmann, R., Bergsdorf, C., & Sumper, M. (2000). Species-specific polyamines from diatoms control silica morphology. Proceedings of the National Academy of Sciences of the United States of America, 97, 14133–14138.

    Article  PubMed  Google Scholar 

  • Lee, D. Y., & Fiehn, O. (2008). High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods, 4, 7.

    Article  CAS  Google Scholar 

  • Liu, M. S., & Hellebust, J. A. (1976). Regulation of proline metabolism in the marine centric diatom Cyclotella cryptica. Canadian Journal of Botany, 54, 949–959.

    Article  CAS  Google Scholar 

  • Maier, I., & Calenberg, M. (1994). Effect of extracellular Ca2+ and Ca2+-antagonists on the movement and chemoorientation of male gametes of Ectocarpus siliculosus (Phaeophyceae). Botanica Acta, 107, 451–460.

    CAS  Google Scholar 

  • Martins, A. M., Camacho, D., Shuman, J., Sha, W., Mendes, P., & Shulaev, V. (2004). A systems biology study of two distinct growth phases of Saccharomyces cerevisiae cultures. Current Genomics, 5, 649–663.

    Article  CAS  Google Scholar 

  • McCune, B., Grace, B. G., & Urban, D. L. (2002). Analysis of ecological communities. Glenden Beach, OR: MJM software design.

    Google Scholar 

  • Moore, B. S. (2005). Biosynthesis of marine natural products: Microorganisms (Part A). Natural Product Reports, 22, 580–593.

    Article  PubMed  CAS  Google Scholar 

  • Mortainbertrand, A., Descolasgros, C., & Jupin, H. (1988). Growth, photosynthesis and carbon metabolism in the temperate marine diatom Skeletonema costatum adapted to low temperature and low photon flux density. Marine Biology, 100, 135–141.

    Article  CAS  Google Scholar 

  • Müller-Navarra, D. C., Brett, M. T., Liston, A. M., & Goldman, C. R. (2000). A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403, 74–77.

    Article  PubMed  Google Scholar 

  • Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A., & Queguiner, B. (1995). Production and dissolution of biogenic silica in the ocean—revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9, 359–372.

    Article  CAS  Google Scholar 

  • Noureddine Yassaa, A., Ilka Peeken, C., Eckart Zöllner, C., Katrin Bluhm, C., Steve Arnold, E., Dominick Spracklen, E., et al. (2008). Evidence for marine production of monoterpenes. Environmental Chemistry, 5, 391–401.

    Article  Google Scholar 

  • Owens, T. G., Falkowski, P. G., & Whitledge, T. E. (1980). Diel periodicity in cellular chlorophyll content in marine diatoms. Marine Biology, 59, 71–77.

    Article  CAS  Google Scholar 

  • Paschalidis, K. A., & Roubelakis-Angelakis, K. A. (2005). Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiology, 138, 142–152.

    Article  PubMed  CAS  Google Scholar 

  • Paul, C., & Pohnert, G. (2011). Interactions of the algicidal bacterium Kordia algicida with diatoms: Regulated protein excretion for specific algal lysis. PLoS One, 6(6), e21032. doi:10.1371/journal.pone.0021032.

    Article  PubMed  CAS  Google Scholar 

  • Pistocchi, R., Trigari, G., Serrazanetti, G. P., Taddei, P., Monti, G., Palamidesi, S., et al. (2005). Chemical and biochemical parameters of cultured diatoms and bacteria from the Adriatic Sea as possible biomarkers of mucilage production. Science of the Total Environment, 353, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Pohnert, G. (2000). Wound-activated chemical defense in unicellular planktonic algae. Angewandte Chemie-International Edition, 39, 4352–4354.

    Article  CAS  Google Scholar 

  • Pohnert, G. (2002). Biomineralization in diatoms mediated through peptide- and polyamine-assisted condensation of silica. Angewandte Chemie-International Edition, 41, 3167.

    Article  CAS  Google Scholar 

  • Pohnert, G. (2005). Diatom/copepod interactions in plankton: The indirect chemical defense of unicellular algae. ChemBioChem, 6, 946–959.

    Article  PubMed  CAS  Google Scholar 

  • Puskaric, S., & Mortain-Bertrand, A. (2003). Physiology of diatom Skeletonema costatum (Grev.) Cleve photosynthetic extracellular release: Evidence for a novel coupling between marine bacteria and phytoplankton. Journal of Plankton Research, 25, 1227–1235.

    Article  CAS  Google Scholar 

  • Renberg, L., Johansson, A. I., Shutova, T., Stenlund, H., Aksmann, A., Raven, J. A., et al. (2010). A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiology, 154, 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Ribalet, F., Wichard, T., Pohnert, G., Ianora, A., Miralto, A., & Casotti, R. (2007). Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry, 68, 2059–2067.

    Article  PubMed  CAS  Google Scholar 

  • Roubeix, V., Becquevort, S., & Lancelot, C. (2008). Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems. Biogeochemistry, 88, 47–62.

    Article  CAS  Google Scholar 

  • Rowland, S. J., Allard, W. G., Belt, S. T., Massé, G., Robert, J. M., Blackburn, S., et al. (2001). Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry, 58, 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Serra, J. L., Llama, M. J., & Cadenas, E. (1978). Nitrate utilization by the diatom Skeletonema costatum: I. Kinetics of nitrate uptake. Plant Physiology, 62, 987–990.

    Article  PubMed  CAS  Google Scholar 

  • Sfichi-Duke, L., Ioannidis, N., & Kotzabasis, K. (2008). Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress: A comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. Planta, 228, 341–353.

    Article  PubMed  CAS  Google Scholar 

  • Staples, C. A., Williams, J. B., Craig, G. R., & Roberts, K. M. (2001). Fate, effects and potential environmental risks of ethylene glycol: A review. Chemosphere, 43, 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Stryer, L. (1995). La Biochimie. Paris: Flammarion.

    Google Scholar 

  • Terekhova, V. E., Aizdaicher, N. A., Buzoleva, L. S., & Somov, G. P. (2009). Influence of extrametabolites of marine microalgae on the reproduction of the bacterium Listeria monocytogenes. Russian Journal of Marine Biology, 35, 355–358.

    Article  CAS  Google Scholar 

  • Vidoudez, C., Nejstgaard, J. C., Jakobsen, H. H., & Pohnert, G. (2011). Dynamics of dissolved and particulate polyunsaturated aldehydes in mesocosms inoculated with different densities of the diatom Skeletonema marinoi. Marine Drugs, 9, 345–358.

    Article  PubMed  CAS  Google Scholar 

  • Vidoudez, C., & Pohnert, G. (2008). Growth phase specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. Journal of Plankton Research, 30, 1305–1313.

    Article  CAS  Google Scholar 

  • Wagner, C., Sefkow, M., & Kopka, J. (2003). Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 62, 887–900.

    Article  PubMed  CAS  Google Scholar 

  • Wichard, T., Gerecht, A., Boersma, M., Poulet, S. A., Wiltshire, K., & Pohnert, G. (2007). Lipid and fatty acid composition of diatoms revisited: Rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. ChemBioChem, 8, 1146–1153.

    Article  PubMed  CAS  Google Scholar 

  • Wichard, T., Poulet, S. A., Halsband-Lenk, C., Albaina, A., Harris, R., Liu, D. Y., et al. (2005). Survey of the chemical defence potential of diatoms: Screening of fifty one species for alpha,beta,gamma,delta-unsaturated aldehydes. Journal of Chemical Ecology, 31, 949–958.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, C., Buchel, C., Fisahn, J., Goss, R., Jakob, T., LaRoche, J., et al. (2006). The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist, 157, 91–124.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y., et al. (2007). Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Marine Ecology Progress Series, 339, 83–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the DFG (PO 628/5-1) and the SNF for funding. The VolkswagenStiftung is acknowledged for the generous support within the framework of a Lichtenberg Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Pohnert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 809 kb)

Supplementary material 2 (XLSX 451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidoudez, C., Pohnert, G. Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics 8, 654–669 (2012). https://doi.org/10.1007/s11306-011-0356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0356-6

Keywords

Navigation