Skip to main content
Log in

Identification of lipophilic bioproduct portfolio from bioreactor samples of extreme halophilic archaea with HPLC-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Extreme halophilic archaea are a yet unexploited source of natural carotenoids. At elevated salinities, however, material corrosivity issues occur and the performance of analytical methods is strongly affected. The goal of this study was to develop a method for identification and downstream processing of potentially valuable bioproducts produced by archaea. To circumvent extreme salinities during analysis, a direct sample preparation method was established to selectively extract both the polar and the nonpolar lipid contents of extreme halophiles with hexane, acetone and the mixture of MeOH/MTBE/water, respectively. Halogenated solvents, as used in conventional extraction methods, were omitted because of environmental considerations and potential process scale-up. The HPLC-MS/MS method using atmospheric pressure chemical ionization was developed and tuned with three commercially available C40 carotenoid standards, covering the wide polarity range of natural carotenoids, containing different number of OH-groups. The chromatographic separation was achieved on a C30 RP-HPLC column with a MeOH/MTBE/water gradient. Polar lipids, the geometric isomers of the C50 carotenoid bacterioruberin, and vitamin MK-8 were the most valuable products found in bioreactor samples. In contrast to literature on shake flask cultivations, no anhydrous analogues of bacterioruberin, as by-products of the carotenoid biosynthesis, were detected in bioreactor samples. This study demonstrates the importance of sample preparation and the applicability of HPLC-MS/MS methods on real samples from extreme halophilic strains. Furthermore, from a biotechnological point-of-view, this study would like to reveal the relevance of using controlled and defined bioreactor cultivations instead of shake flask cultures in the early stage of potential bioproduct profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zanolari B, Ndjoko K, Ioset J-R, Marston A, Hostettmann K (2002) Qualitative and quantitative determination of yohimbine in commercial aphrodisiacs by LC/DAD/MS. Phytochem Anal 14(4):193–201

    Article  CAS  Google Scholar 

  2. Kerwin JL, Tuininga AR, Ericsson LH (1994) Identification of molecular species of glycerophopsholipids and sphyigomyelin using electrospray mass spectrometry. J Lipid Res 35:1002–1114

    Google Scholar 

  3. Ndjoko K, Wolfender J-L, Hostettmann K (2000) Determination of trace amounts of ginkgolic acids in Ginkgo biloba L. Leaf extracts and phytopharmaceuticals by LC/ES-MS. J Chromatogr B 744:249–255

    Article  CAS  Google Scholar 

  4. Waridel P, Wolfender JL, Ndjoko K, Hobby KR, Major HJ, Hostettmann K (2001) Evaluation of quadrupole time-of-flight tandem mass spectrometry and ion trap multiple stage mass spectrometry for the differentiation of C-glycosidic flavonoids isomers. J Chromatogr A 926:29–41

    Article  CAS  Google Scholar 

  5. 5. Scheubert K, Hufsky F, Böcker S (2013) Computational mass spectrometry for small molecules. J Cheminformatics 5(12). doi:10.1186/1758-2946-5-12

  6. Lindon JC, Nicholson JK, Wilson ID (2000) Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. J Chromatogr B 748(1):233–258

    Article  CAS  Google Scholar 

  7. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Industr Microbiol Biotechnol 28(1):56–63. doi:10.1038/sj/jim/7000176

    Article  CAS  Google Scholar 

  8. Oren A (2009) Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red? Nat Resour Environ 15:247–255

    Google Scholar 

  9. Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39(1):1–7

    Article  CAS  Google Scholar 

  10. Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids Vol 1b: spectroscopy. In: Britton G (ed) UV/visible spectroscopy, vol 1B. Birkhäuser, Basel, pp 13–62

    Google Scholar 

  11. Yachai M (2009) Carotenoid production by halophilic Archaea and its applications. PhD Thesis, Prince of Songka University

  12. Kaiser P, Geyer R, Surmann P, Fuhrmann H (2012) LC-MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 88(1):28–34. doi:10.1016/j.mimet.2011.10.001

    Article  CAS  Google Scholar 

  13. van Breemen RB, Dong L, Pajkovic ND (2012) Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom 312:163–172. doi:10.1016/j.ijms.2011.07.030

    Article  CAS  Google Scholar 

  14. Corcelli A (2009) The cardiolipin analogues of archaea. Biochim Biophys Acta 1788(10):2101–2106. doi:10.1016/j.bbamem.2009.05.010

    Article  CAS  Google Scholar 

  15. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A (2012) Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta Biomembr 1818(5):1365–1373. doi:10.1016/j.bbamem.2012.02.014

    Article  CAS  Google Scholar 

  16. Ronnekleiv M, Liaaen-Jensen S (1995) Bacterial carotenoids 53, C50-carotenoids 23; carotenoids of haloferax volcanii versus other halophilic bacteria. Biochem Syst Ecol 23(6):627–634. doi:10.1016/0305-1978(95)00047-x

    Article  CAS  Google Scholar 

  17. Roennekleiv M, Lenes M, Norgaard S, Liaaen-Jensen S (1995) Three dodecaene C50-carotenoids from halophilic bacteria. Phytochemistry 39(3):631–634. doi:10.1016/0031-9422(95)00975-d

    Article  CAS  Google Scholar 

  18. Khanafari A, Khavarinejad D, Mashinchian A (2010) Solar salt lake as natural environmental source for extraction halophilic pigments. Iran J Microbiol 2(2):103–109

    CAS  Google Scholar 

  19. Fang C-J, Ku K-L, Lee M-H, Su N-W (2010) Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresource Technol 101(16):6487–6493. doi:10.1016/j.biortech.2010.03.044

    Article  CAS  Google Scholar 

  20. Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ (2012) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol 28(4):1781–1790. doi:10.1007/s11274-011-0993-y

    Article  CAS  Google Scholar 

  21. Rivera SM, Canela-Garayoa R (2012) Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A 1224:1–10. doi:10.1016/j.chroma.2011.12.025

    Article  CAS  Google Scholar 

  22. Krummel DA, Seligson FH, Guthrie HA (1996) Hyperactivity: is candy causal? Crit Rev Food Sci Nutr 36(1/2):31–47. doi:10.1080/10408399609527717

    Article  CAS  Google Scholar 

  23. Kates M (1993) Biology of halophilic bacteria. Part II. Membrane lipids of extreme halophiles: biosynthesis, function, and evolutionary significance. Experientia 49(12):1027–1036

    Article  CAS  Google Scholar 

  24. Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–321

    CAS  Google Scholar 

  25. Cheung AM, Tile L, Lee Y, Tomlinson G, Hawker G, Scher J, Hu H, Vieth R, Thompson L, Jamal S, Josse R (2008) Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med 5(10):1461–1472. doi:10.1371/journal.pmed.0050196

    Article  CAS  Google Scholar 

  26. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31(8/9):825–834. doi:10.1080/09593330903370026

    Article  CAS  Google Scholar 

  27. Li Z, Zhang L, Sun W, Ding Q, Hou Y, Xu Y (2011) Archaeosomes with encapsulated antigens for oral vaccine delivery. Vaccine 29(32):5260–5266. doi:10.1016/j.vaccine.2011.05.015

    Article  CAS  Google Scholar 

  28. Lorantfy B, Seyer B, Herwig C (2014) Stoichiometric and kinetic analysis of extreme halophilic archaea on various substrates in a corrosion resistant bioreactor. New Biotechnol 31(1):80–89. doi:10.1016/j.nbt.2013.08.003

    Article  CAS  Google Scholar 

  29. Asker D, Ohta Y (1999) Production of canthaxanthin by extremely halophilic bacteria. J Biosci Bioeng 88(6):617–621. doi:10.1016/s1389-1723(00)87089-9

    Article  CAS  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  31. Kates M (1986) Techniques of lipidology: isolation, analysis, and identification of lipids. Elsevier, Amsterdam

    Google Scholar 

  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241. doi:10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  33. Asker D, Awad T, Ohta Y (2002) Lipids of Haloferax alexandrinus strain TMT: an extremely halophilic canthaxanthin-producing archaeon. J Biosci Bioeng 93(1):37–43. doi:10.1016/S1389-1723(02)80051-2

    CAS  Google Scholar 

  34. Upasani VN, Desai SG, Moldoveana N, Kates M (1994) Lipids of extremely halophilic archaebacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Reading U K 140(8):1959–1966. doi:10.1099/13500872-140-8-1959

    CAS  Google Scholar 

  35. Kaiser P, Surmann P, Vallentin G, Fuhrmann H (2007) A small-scale method for quantitation of carotenoids in bacteria and yeasts. J Microbiol Methods 70(1):142–149. doi:10.1016/j.mimet.2007.04.004

    Article  CAS  Google Scholar 

  36. Koecher S, Breitenbach J, Mueller V, Sandmann G (2009) Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Arch Microbiol 191(2):95–104. doi:10.1007/s00203-008-0431-1

    Article  CAS  Google Scholar 

  37. Breton M, Leblond J, Tranchant I, Scherman D, Bessodes M, Herscovici J, Mignet N (2011) Lipothioureas as lipids for gene transfection: a review. Pharmaceuticals 4(10):1381–1399. doi:10.3390/ph4101381

    Article  CAS  Google Scholar 

  38. van Breemen RB, Huang C-R, Tan Y, Sander LC, Schilling AB (1996) Liquid chromatography/mass spectrometry of carotenoids using atmospheric pressure chemical ionization. J Mass Spectrom 31(9):975–981. doi:10.1002/(SICI)1096-9888(199609)31:9<975::AID-JMS380>3.0.CO;2-S

    Article  Google Scholar 

  39. Prakash C, Shaffer CL, Nedderman A (2007) Analytical strategies for identifying drug metabolites. Mass spectrometry reviews 26(3):340–369. doi:10.1002/mas.20128

    Article  CAS  Google Scholar 

  40. Yokoyama A, Sandmann G, Hoshino T, Adachi K, Sakai M, Shizuri Y (1995) Thermozeaxanthins, new carotenoid-glycoside-esters from thermophilic eubacterium Thermus thermophilus. Tetrahedron Lett 36(27):4901–4904. doi:10.1016/0040-4039(95)00881-c

    Article  CAS  Google Scholar 

  41. Jin Y, Y-s X, F-f Z, Xue X-y XQ, X-m L (2008) Systematic screening and characterization of flavonoid glycosides in Carthamus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 46(3):418–430. doi:10.1016/j.jpba.2007.10.036

    Article  CAS  Google Scholar 

  42. Kushwaha SC, Kates M (1976) Effect of nicotine on biosynthesis of C50 carotenoids in Halobacterium cutirubrum. Can J Biochem 54(9):824–829

    Article  CAS  Google Scholar 

  43. Boileau TWM, Boileau AC, Erdman JW Jr (2002) Bioavailability of all-trans and cis-isomers of lycopene. Exp Biol Med 227(10):914–919

    CAS  Google Scholar 

  44. Losen M, Froehlich B, Pohl M, Buechs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20(4):1062–1068. doi:10.1021/bp034282t

    Article  CAS  Google Scholar 

  45. Fendrihan S, Legat A, Pfaffenhuemer M, Gruber C, Weidler G, Gerbl F, Stan-Lotter H (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Biotechnol 5(2/3):203–218. doi:10.1007/s11157-006-0007-y

    Article  CAS  Google Scholar 

  46. Sandmann G (2009) Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys 483(2):169–174. doi:10.1016/j.abb.2008.10.004

    Article  CAS  Google Scholar 

  47. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45(2):316–354

    CAS  Google Scholar 

  48. Kong MK, Lee PC (2011) Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production. Biotechnol Bioeng 108(8):1997–2002. doi:10.1002/bit.23142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C. Koch and B. Lendl gratefully acknowledge partial financial support by the Austrian research funding association (FFG) under the scope of the COMET program within the research network Process Analytical Chemistry (PAC) (contract no. 825340). This program is promoted by BMVIT (Federal Ministry of Transport and Innovation), BMWFJ (Federal Ministry of Economy, Family, and Youth), and the federal state of upper Austria. Thanks are expressed to Bernhard Seyer for the biomass samples. The authors thank the Referees for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Herwig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 915 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorantfy, B., Renkecz, T., Koch, C. et al. Identification of lipophilic bioproduct portfolio from bioreactor samples of extreme halophilic archaea with HPLC-MS/MS. Anal Bioanal Chem 406, 2421–2432 (2014). https://doi.org/10.1007/s00216-014-7626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7626-x

Keywords

Navigation