Skip to main content
Log in

Monitoring subcellular biotransformation of N-l-leucyldoxorubicin by micellar electrokinetic capillary chromatography coupled to laser-induced fluorescence detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Development of prodrugs is a promising alternative to address cytotoxicity and nonspecificity of common anticancer agents. N-l-leucyldoxorubicin (LeuDox) is a prodrug that is biotransformed to the anticancer drug doxorubicin (Dox) in the extracellular space; however, its biotransformation may also occur intracellularly in endocytic organelles. Such organelle-specific biotransformation is yet to be determined. In this study, magnetically enriched endocytic organelle fractions from human uterine sarcoma cells were treated with LeuDox. Micellar electrokinetic chromatography with laser-induced fluorescence detection (MEKC-LIF) was used to determine that 10 % of LeuDox was biotransformed to Dox, accounting for ∼43 % of the biotransformation occurring in the post-nuclear fraction. This finding suggests that endocytic organelles also participate in the intracellular biotransformation of LeuDox to Dox.

MEKC-LIF monitors the biotransformation of N-l-leucyldoxorubicin to doxorubicin specific to magnetically enriched endocytic organelles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson SA, Richardson DS (1998) Anthracyclines in haematology: pharmacokinetics and clinical studies. Blood Rev 12(1):52–71

    Article  CAS  Google Scholar 

  2. Hortobagyi GN (1997) Anthracyclines in the treatment of cancer—an overview. Drugs 54(suppl 4):1–7

    Article  CAS  Google Scholar 

  3. Maluf FC, Spriggs D (2002) Anthracyclines in the treatment of gynecologic malignancies. Gynecol Oncol 85(1):18–31

    Article  CAS  Google Scholar 

  4. de Bruijn P, Verweij J, Loos WJ, Kolker HJ, Planting AST, Nooter K, Stoter G, Sparreboom A (1999) Determination of doxorubicin and doxorubicinol in plasma of cancer patients by high-performance liquid chromatography. Anal Biochem 266(2):216–221

    Article  Google Scholar 

  5. Jeyaseelan R, Poizat C, Wu HY, Kedes L (1997) Molecular mechanisms of doxorubicin-induced cardiomyopathy—selective suppression of Reiske iron-sulfur protein, ADP/ATP translocase, and phosphofructokinase genes is associated with ATP depletion in rat cardiomyocytes. J Biol Chem 272(9):5828–5832

    Article  CAS  Google Scholar 

  6. Singal PK, Deally CMR, Weinberg LE (1987) Subcellular effects of adriamycin in the heart—a concise review. J Mol Cell Cardiol 19(8):817–828

    Article  CAS  Google Scholar 

  7. Wadler S, Fuks JZ, Wiernik PH (1986) Phase-I and phase-II agents in cancer therapy. 1. Anthracyclines and related-compounds. J Clin Pharmacol 26(7):491–509

    Article  CAS  Google Scholar 

  8. Zhou SY, Starkov A, Froberg MK, Leino RL, Wallace KB (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61(2):771–777

    CAS  Google Scholar 

  9. Baldini N, Scotlandi K, Serra M, Shikita T, Zini N, Ognibene A, Santi S, Ferracini R, Maraldi NM (1995) Nuclear immunolocalization of P-glycoprotein in multidrug-resistant cell-lines showing similar mechanisms of doxorubicin distribution. Eur J Cell Biol 68(3):226–239

    CAS  Google Scholar 

  10. Abbaszadegan MR, Cress AE, Futscher BW, Bellamy WT, Dalton WS (1996) Evidence for cytoplasmic P-glycoprotein location associated with increased multidrug resistance and resistance to chemosensitizers. Cancer Res 56(23):5435–5442

    CAS  Google Scholar 

  11. Mordente A, Meucci E, Silvestrini A, Martorana GE, Giardina B (2009) New developments in anthracycline-induced cardiotoxicity. Curr Med Chem 16(13):1656–1672

    Article  CAS  Google Scholar 

  12. Wang YH, Arriaga EA (2008) Monitoring incorporation, transformation and subcellular distribution of N-L-leucyl-doxorubicin in uterine sarcoma cells using capillary electrophoretic techniques. Cancer Lett 262(1):123–132

    Article  CAS  Google Scholar 

  13. Bennis S, Garcia C, Robert J (1993) Aspects of the cellular pharmacology of N-L-leucyldoxorubicin in human tumor-cell lines. Biochem Pharmacol 45(9):1929–1931

    Article  CAS  Google Scholar 

  14. Breistol K, Hendriks HR, Berger DP, Langdon SP, Fiebig HH, Fodstad O (1998) The antitumour activity of the prodrug N-L-leucyl-doxorubicin and its parent compound doxorubicin in human tumour xenografts. Eur J Cancer 34(10):1602–1606

    Article  CAS  Google Scholar 

  15. Deprez-de Campeneere D, Baurain R, Trouet A (1982) Accumulation and metabolism of new anthracycline derivatives in the heart after IV injection into mice. Cancer Chemother Pharmacol 8(2):193–197

    Article  CAS  Google Scholar 

  16. Jaenke RS, Deprez-DeCampeneere D, Trouet A (1980) Cardiotoxicity and comparative pharmacokinetics of six anthracyclines in the rabbit. Cancer Res 40(10):3530–3536

    CAS  Google Scholar 

  17. Dejong J, Vermorken JB, Vandervijgh WJF (1992) Analysis and pharmacokinetics of a new prodrug N-L-leucyldoxorubicin and its metabolites in plasma using HPLC with fluorescence detection. J Pharm Biomed Anal 10(4):309–314

    Article  CAS  Google Scholar 

  18. Dejong J, Geijssen GJ, Munniksma CN, Vermorken JB, Vandervijgh WJF (1992) Plasma pharmacokinetics and pharmacodynamics of a new prodrug N-L-leucyldoxorubicin and its metabolites in a phase-I clinical trial. J Clin Oncol 10(12):1897–1906

    CAS  Google Scholar 

  19. Canal P, Robert J, Ramon M, Baurain R, Tresca P, de Forni M, Marty M, Pujade-Lauraine E, Bugat R, Magis A, Belpomme D (1992) Human pharmacokinetics of N-L-leucyldoxorubicin, a new anthracycline derivative, and its correlation with clinical toxicities. Clin Pharmacol Ther 51:249–259

    Article  CAS  Google Scholar 

  20. Masquelier M, Baurain R, Trouet A (1980) Amino acid and dipeptide derivatives of daunorubicin. 1. Synthesis, physicochemical properties, and lysosomal digestion. J Med Chem 23(11):1166–1170

    Article  CAS  Google Scholar 

  21. Mueller BM (1996) Different roles for plasminogen activators and metalloproteinases in melanoma metastasis. In: Günthert U, Birchmeier W (eds) Attempts to understand metastasis formation I, vol 213/1, Current topics in microbiology 213/I and immunology. Springer, Berlin Heidelberg, pp 65–80. doi:10.1007/978-3-642-61107-0_5

    Chapter  Google Scholar 

  22. Schindler M, Grabski S, Hoff E, Simon SM (1996) Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry (Mosc) 35(9):2811–2817

    Article  CAS  Google Scholar 

  23. Bröker LE, Kruyt FAE, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162

    Article  Google Scholar 

  24. Lübke T, Lobel P, Sleat DE (2009) Proteomics of the lysosome. Biochim Biophys Acta, Mol Cell Res 1793(4):625–635

    Article  CAS  Google Scholar 

  25. Trouet A, Masquelier M, Baurain R, Deprezdecampeneere D (1982) A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate- in vitro and in vivo studies. Proc National Acad Sci U S Am Biol Sci 79(2):626–629

    Article  CAS  Google Scholar 

  26. Trouet A (1974) Isolation of modified liver lysosomes. Methods Enzymol 31:323–329

    Article  CAS  Google Scholar 

  27. Satori CP, Kostal V, Arriaga EA (2011) Individual organelle pH determinations of magnetically enriched endocytic organelles via laser-induced fluorescence detection. Anal Chem 83(19):7331–7339

    Article  CAS  Google Scholar 

  28. Rodriguez-Paris JM, Nolta KV, Steck TL (1993) Characterization of lysosomes isolated from Dictyostelium discoideum by magnetic fractionation. J Biol Chem 268(12):9110–9116

    CAS  Google Scholar 

  29. Tatosian DA, Shuler ML (2009) A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol Bioeng 103(1):187–198

    Article  CAS  Google Scholar 

  30. Duffy CF, Gafoor S, Richards DP, Admadzadeh H, O’Kennedy R, Arriaga EA (2001) Determination of properties of individual liposomes by capillary electrophoresis with postcolumn laser-induced fluorescence detection. Anal Chem 73(8):1855–1861

    Article  CAS  Google Scholar 

  31. Anderson AB, Gergen J, Arriaga EA (2002) Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 769(1):97–106

    Article  CAS  Google Scholar 

  32. Li XF, Ren H, Le X, Qi M, Ireland ID, Dovichi NJ (2000) Migration time correction for the analysis of derivatized amino acids and oligosaccharides by micellar capillary electrochromatography. J Chromatogr A 869(1–2):375–384

    Google Scholar 

  33. Eder AR, Chen JS, Arriaga EA (2006) Separation of doxorubicin and doxorubicinol by cyclodextrin-modified micellar electrokinetic capillary chromatography. Electrophoresis 27(16):3263–3270

    Article  CAS  Google Scholar 

  34. Jonas AJ, Smith ML, Allison WS, Laikind PK, Greene AA, Schneider JA (1983) Proton-translocating ATPase and lysosomal cystine transport. J Biol Chem 258(19):11727–11730

    CAS  Google Scholar 

  35. Temesvari LA, Rodriguez-Paris JM, Bush JM, Zhang L, Cardelli JA (1996) Involvement of the vacuolar proton-translocating ATPase in multiple steps of the endo-lysosomal system and in the contractile vacuole system of Dictyostelium discoideum. J Cell Sci 109(6):1479–1495

    CAS  Google Scholar 

  36. Zborowski M, Sun LP, Moore LR, Williams PS, Chalmers JJ (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. JMMM 194(1–3):224–230

    Article  CAS  Google Scholar 

  37. Diettrich O, Mills K, Johnson AW, Hasilik A, Winchester BG (1998) Application of magnetic chromatography to the isolation of lysosomes from fibroblasts of patients with lysosomal storage disorders. Febs Letters 441(3):369–372

    Article  CAS  Google Scholar 

  38. Beveridge JS, Stephens JR, Latham AH, Williams ME (2009) Differential magnetic catch and release: analysis and separation of magnetic nanoparticles. Anal Chem 81(23):9618–9624

    Article  CAS  Google Scholar 

  39. Ostergaard S, Blankenstein G, Dirac H, Leistiko O (1999) A novel approach to the automation of clinical chemistry by controlled manipulation of magnetic particles. J Magn Mater 194(1–3):156–162

    Article  CAS  Google Scholar 

  40. Wang YH, Taylor TH, Arriaga EA (2012) Analysis of the bioactivity of magnetically immunoisolated peroxisomes. Anal Bioanal Chem 402(1):41–49

    Article  CAS  Google Scholar 

  41. Nylandsted J, Becker AC, Bunkenborg J, Andersen JS, Dengjel J, Jaattela M (2011) ErbB2-associated changes in the lysosomal proteome. Proteomics 11(14):2830–2838

    Article  CAS  Google Scholar 

  42. Nielsen UB, Kirpotin DB, Pickering EM, Hong K, Park JW, Refaat Shalaby M, Shao Y, Benz CC, Marks JD (2002) Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta, Mol Cell Res 1591(1–3):109–118

    Article  CAS  Google Scholar 

  43. Eder AR, Arriaga EA (2006) Capillary electrophoresis monitors enhancement in subcellular reactive oxygen species production upon treatment with doxorubicin. Chem Res Toxicol 19(9):1151–1159

    Article  CAS  Google Scholar 

  44. Breistol K, Hendriks HR, Fodstad O (1999) Superior therapeutic efficacy of N-L-leucyl-doxorubicin versus doxorubicin in human melanoma xenografts correlates with higher tumour concentrations of free drug. Eur J Cancer 35(7):1143–1149

    Article  CAS  Google Scholar 

  45. Houba PHJ, Boven E, Meulen-Muileman IH, Leenders RGG, Scheeren JW, Pinedo HM, Haisma HJ (2001) A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 84(4):550–557

    Article  CAS  Google Scholar 

  46. Boven E, Hendriks HR, Erkelens CAM, Pinedo HM (1992) The anti-tumour effects of the prodrugs N-l-leucyl-doxorubicin and vinblastine-isoleucinate in human ovarian cancer xenografts. Br J Cancer 66(6):1044–1047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.S. was supported by NIH grant T32 GM008347. B.M. was sponsored by the University of Minnesota’s Undergraduate Research Opportunities Program. We would like to thank Joseph J. Dalluge for his assistance with mass spectrometry and George Barany for his guidance on the synthesis of LeuDox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar A. Arriaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satori, C.P., Meyer, B. & Arriaga, E.A. Monitoring subcellular biotransformation of N-l-leucyldoxorubicin by micellar electrokinetic capillary chromatography coupled to laser-induced fluorescence detection. Anal Bioanal Chem 406, 2389–2397 (2014). https://doi.org/10.1007/s00216-014-7615-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7615-0

Keywords

Navigation