Skip to main content
Log in

Stabilized phospholipid membranes in chromatography: toward membrane protein-functionalized stationary phases

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Transmembrane protein (TMP)-functionalized materials have resulted in powerful new methods in chemical analysis. Of particular interest is the development of high-throughput, TMP-functionalized stationary phases for affinity chromatography of complex mixtures of analytes. Several natural and synthetic phospholipids and lipid mimics have been used for TMP reconstitution, although the resulting membranes often lack the requisite chemical and temporal stability for long-term use, a problem that is exacerbated in flowing separation systems. Polymerizable lipids with markedly increased membrane stability and TMP functionality have been developed over the past two decades. More recently, these lipids have been incorporated into a range of analytical methods, including separation techniques, and are now poised to have a significant impact on TMP-based separations. Here, we describe current methods for preparing TMP-containing stationary phases and examine the potential utility of polymerizable lipids in TMP affinity chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bis-SorbPC:

1,2-bis[10-(2′,4′-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocholine

DiynePC:

1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine

GLUT1:

Type 1 glucose transporter

GPCR:

G-protein coupled receptor

IAM:

Immobilized artificial membrane

ILC:

Immobilized liposome chromatography

PSLB:

Planar supported lipid bilayer

PTPE:

1-palmitoyl-2-(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine

SUV:

Small unilamellar vesicle

TMP:

Transmembrane protein

UV:

Ultraviolet

References

  1. Wolcke J, Ullmann D (2001) Miniaturized HTS technologies—uHTS. Drug Discov Today 6:637–646

    Article  Google Scholar 

  2. Moaddel R, Wainer IW (2007) Conformational mobility of immobilized proteins. J Pharm Biomed Anal 43:399–406

    Article  CAS  Google Scholar 

  3. Wiedmer SK, Jussila MS, Riekkola M-L (2004) Phospholipids and liposomes in liquid chromatographic and capillary electromigration techniques. Trends Anal Chem 23:562–582

    Article  CAS  Google Scholar 

  4. Proverbio D, Roos C, Beyermann M, Orban E, Dotsch V, Bernhard F (2013) Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artificial membrane environments. Biochim Biophys Acta 1828:2182–2192

    Article  CAS  Google Scholar 

  5. Zhang C, Li J, Xu L, Shi Z-G (2012) Fast immobilized liposome chromatography based on penetrable silica microspheres for screening and analysis of permeable compounds. J Chromatogr A 1233:78–84

    Article  CAS  Google Scholar 

  6. Moravcova D, Planeta J, Wiedmer SK (2013) Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography. J Chromatogr A. doi:10.1016/j.chroma.2013.08.031

    Google Scholar 

  7. Liu X-Y, Yang Q, Nakamura C, Miyake J (2001) Avidin-biotin-immobilized liposome column for chromatographic fluorescence on-line analysis of solute-membrane interactions. J Chromatogr B 750:51–60

    Article  CAS  Google Scholar 

  8. Krause E, Dathe M, Wieprecht T, Bienert M (1999) Noncovalent immobilized artificial membrane chromatography, an improved method for describing peptide-lipid bilayer interactions. J Chromatogr A 849:125–133

    Article  CAS  Google Scholar 

  9. Wang S, Wang C, Zhao X, Mao S, Wu Y, Fan G (2012) Comprehensive two-dimensional high performance liquid chromatography system with immobilized liposome chromatography column and monolithic column for separation of traditional Chinese medicine Schisandra chinensis. Anal Chim Acta 713:121–129

    Article  CAS  Google Scholar 

  10. Zeng C-M, Zhang Y, Lu L, Brekkan E, Lundqvist A, Lundahl P (1997) Immobilization of human red cells in gel particles for chromatographic activity studies of the glucose transporter Glut1. Biochim Biophys Acta 1325:91–98

    Article  CAS  Google Scholar 

  11. Yang Q, Lundahl P (1995) Immobilized proteoliposome affinity chromatography for quantitative analysis of specific interactions between solutes and membrane proteins. Interaction of cytochalasin B and D-glucose with the glucose transporter Glut1. Biochemistry 34:7289–7294

    Article  CAS  Google Scholar 

  12. Moaddel R, Rosenberg A, Spelman K, Frazier J, Frazier C, Nocerino S, Brizzi A, Mugnaini C, Wainer IW (2011) Development and characterization of immobilized cannabinoid receptor (CB1/CB2) open tubular column for on-line screening. Anal Biochem 412:85–91

    Article  CAS  Google Scholar 

  13. Moaddel R, Wainer IW (2006) Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations. Anal Chim Acta 564:97–105

    Article  CAS  Google Scholar 

  14. Taillardat-Bertschinger A, Carrupt P-A, Barbato F, Testa B (2003) Immobilized artificial membrane HPLC in drug research. J Med Chem 46:655–665

    Article  CAS  Google Scholar 

  15. Zhang Y, Xiao Y, Kellar KJ, Wainer IW (1998) Immobilized nicotinic receptor stationary phase for on-line liquid chromatographic determination of drug-receptor affinities. Anal Biochem 264:22–25

    Article  CAS  Google Scholar 

  16. Beigi F, Wainer IW (2003) Synthesis of immobilized G protein-coupled receptor chromatographic stationary phases: characterization of immobilized μ and κ opioid receptors. Anal Chem 75:4480–4485

    Article  CAS  Google Scholar 

  17. Moaddel R, Wainer IW (2009) The preparation and development of cellular membrane affinity chromatography columns. Nat Protoc 4:197–205

    Article  CAS  Google Scholar 

  18. Gottschalk I, Lagerquist C, Zuo S-S, Lundqvist A, Lundahl P (2002) Immobilized-biomembrane affinity chromatography for binding studies of membrane proteins. J Chromatogr B 768:31–40

    Article  CAS  Google Scholar 

  19. Hotz J, Meier W (1998) Vesicle-templated polymer hollow spheres. Langmuir 14:1031–1036

    Article  CAS  Google Scholar 

  20. Cheng Z, Aspinwall CA (2006) Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles. Analyst 131:236–243

    Article  CAS  Google Scholar 

  21. Mueller A, O'Brien DF (2002) Supramolecular materials via polymerization of mesophases of hydrated amphiphiles. Chem Rev 102:727–757

    Article  CAS  Google Scholar 

  22. Subramaniam V, Alves ID, Salgado GFJ, Lau P-W, Wysocki RJ Jr, Salamon Z, Tollin G, Hruby VJ, Brown MF, Saavedra SS (2005) Rhodopsin reconstituted into a planar-supported lipid bilayer retains photoactivity after cross-linking polymerization of lipid monomers. J Am Chem Soc 127:5320–5321

    Article  CAS  Google Scholar 

  23. Daly SM, Heffernan LA, Barger WR, Shenoy DK (2006) Photopolymerization of mixed monolayers and black lipid membranes containing gramicidin a and diacetylenic phospholipids. Langmuir 22:1215–1222

    Article  CAS  Google Scholar 

  24. Pei L, Lucy CA (2012) Polymerized phospholipid bilayers as permanent coatings for small amine separations using mixed aqueous/organic capillary zone electrophoresis. J Chromatogr A 1267:80–88

    Article  CAS  Google Scholar 

  25. Mansfield E, Ross EE, Aspinwall CA (2007) Preparation and characterization of cross-linked phospholipid bilayer capillary coatings for protein separations. Anal Chem 79:3135–3141

    Article  CAS  Google Scholar 

  26. Ross EE, Mansfield E, Aspinwall CA (2005) In situ fabrication of three-dimensional chemical patterns in fused silica separation capillaries with polymerized phospholipids. J Am Chem Soc 127:16756–16757

    Article  CAS  Google Scholar 

  27. Senarath-Yapa MD, Phimphivong S, Coym JW, Wirth MJ, Aspinwall CA, Saavedra SS (2007) Preparation and characterization of poly(lipid)-coated, fluorophore-doped silica nanoparticles for biolabeling and cellular imaging. Langmuir 23:12624–12633

    Article  CAS  Google Scholar 

  28. Boxer SG (2000) Molecular transport and organization in supported lipid membranes. Curr Opin Chem Biol 4:704–709

    Article  CAS  Google Scholar 

  29. Orosz KS (2011) Diffusion coefficients and mechanical properties of polymerizable lipid membranes. Doctor of Philosophy, University of Arizona, Tucson, AZ

  30. Morigaki K, Baumgart T, Offenhausser A, Knoll W (2001) Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid. Angew Chem Int Ed 40:172–174

    Article  CAS  Google Scholar 

  31. Mansfield E, Ross EE, D'Ambruoso GD, Keogh JP, Huang Y, Aspinwall CA (2007) Fabrication and characterization of spatially defined, multiple component, chemically functionalized domains in enclosed silica channels using cross-linked phospholipid membranes. Langmuir 23:11326–11333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health under grant number GM095763. The authors would like to express our gratitude to L. Kofi Bright Jr for assistance with the graphics.

Disclaimer

Contribution of the U.S. Government; not subject to copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Aspinwall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, E.S., Mansfield, E. & Aspinwall, C.A. Stabilized phospholipid membranes in chromatography: toward membrane protein-functionalized stationary phases. Anal Bioanal Chem 406, 2223–2229 (2014). https://doi.org/10.1007/s00216-013-7545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7545-2

Keywords

Navigation