Skip to main content
Log in

Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Hydrophobic interaction chromatography (HIC) is a rapid growing bioseparation technique, which separates biomolecules, such as therapeutic proteins and antibodys, based on the reversible hydrophobic interaction between immobilized hydrophobic ligands on chromatographic resin spheres and non-polar regions of solute molecule. In this review, the fundamental concepts of HIC and the factors that may affect purification efficiency of HIC is summarized, followed by the comparison of HIC with affinity chromatography and ion-exchange chromatography. Hydrophobic interaction membrane chromatography (HIMC) combines the advantages of HIC and membrane process and has showed great potential in bioseparation. For better understanding of HIMC, this review presents an overview of two main concerns about HIMC, i.e. membrane materials and hydrophobic ligands. Specifically, cellulose fiber-based membrane substrate and environment-responsive ligands are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou H, Luo Q, Zhou D. Affinity membrane chromatography for the analysis and purification of proteins. Journal of Biochemical and Biophysical Methods, 2001, 49(1–3): 199–240

    Article  CAS  Google Scholar 

  2. Walters R R. Affinity chromatography. Analytical Chemistry, 1985, 57(11): 1099A–1114A

    CAS  Google Scholar 

  3. Arakawa T, Kita Y, Sato H, et al. Stress-free chromatography: affinity chromatography. Current Pharmaceutical Biotechnology, 2009, 10(4): 456–460

    Article  CAS  Google Scholar 

  4. Arakawa T, Kita Y, Ejima D, et al. Solvent modulation of column chromatography. Protein and Peptide Letters, 2008, 15 (6): 544–555

    Article  CAS  Google Scholar 

  5. Ayyar B V, Arora S, Murphy C, et al. Affinity chromatography as a tool for antibody purification. Methods, 2012, 56(2): 116–129

    Article  CAS  Google Scholar 

  6. Zeng X, Ruckenstein E. Membrane chromatography: preparation and applications to protein separation. Biotechnology Progress, 1999, 15(6): 1003–1019

    Article  CAS  Google Scholar 

  7. Ghosh R. Separation of proteins using hydrophobic interaction membrane chromatography. Journal of Chromatography A, 2001, 923(1–2): 59–64

    Article  CAS  Google Scholar 

  8. Tennikov M B, Gazdina N V, Tennikova T B, et al. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins. Journal of Chromatography A, 1998, 798(1–2): 55–64

    Article  CAS  Google Scholar 

  9. Svec F, Frechet JMJ. Molded rigid monolithic porous polymers: An inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications. Industrial & Engineering Chemistry Research, 1999, 38(1): 34–48

    Article  CAS  Google Scholar 

  10. Queiroz J A, Tomaz C T, Cabral J M S. Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, 2001, 87 (2): 143–159

    Article  CAS  Google Scholar 

  11. Rowe G E, Aomari H, Chevaldina T, et al. Thermodynamics of hydrophobic interaction chromatography of acetyl amino acid methyl esters. Journal of Chromatography A, 2008, 1177(2): 243–253

    Article  CAS  Google Scholar 

  12. Lienqueo M E, Mahn A, Salgado J C, et al. Current insights on protein behaviour in hydrophobic interaction chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849(1–2): 53–68

    Article  CAS  Google Scholar 

  13. Melander W R, Corradini D, Horváth C. Salt-mediated retention of proteins in hydrophobic-interaction chromatography–Application of solvophobic theory. Journal of Chromatography, 1984, 317: 67–85

    Article  CAS  Google Scholar 

  14. Melander W, Horváth C. Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Archives of Biochemistry and Biophysics, 1977, 183(1): 200–215

    Article  CAS  Google Scholar 

  15. Melander W R, El Rassi Z, Horváth C. Interplay of hydrophobic and electrostatic interactions in bio-polymer chromatography–Effect of salts on the retention of proteins. Journal of Chromatography, 1989, 469(1): 3–27

    Article  CAS  Google Scholar 

  16. Fausnaugh J L, Regnier F E. Solute and mobile phase contributions to retention in hydrophobic interaction chromatography of proteins. Journal of Chromatography, 1986, 359: 131–146

    Article  CAS  Google Scholar 

  17. Arakawa T, Timasheff S N. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry, 1982, 21(25): 6545–6552

    Article  CAS  Google Scholar 

  18. Chen J, Yang T, Luo Q, et al. Investigation of protein retention in hydrophobic interaction chromatographic (HIC) systems using the preferential interaction theory and quantitative structure property relationship models. Reactive & Functional Polymers, 2007, 67(12): 1561–1569

    Article  CAS  Google Scholar 

  19. Mirani M R, Rahimpour F. Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt. Journal of Chromatography A, 2015, 1422: 170–177

    Article  CAS  Google Scholar 

  20. Geng X, Guo L, Chang J. Study of the retention mechanism of proteins in hydrophobic interaction chromatography. Journal of Chromatography A, 1990, 507: 1–23

    Article  CAS  Google Scholar 

  21. Chen J, Cramer S M. Protein adsorption isotherm behavior in hydrophobic interaction chromatography. Journal of Chromatography A, 2007, 1165(1–2): 67–77

    Article  CAS  Google Scholar 

  22. Machold C, Deinhofer K, Hahn R, et al. Hydrophobic interaction chromatography of proteins–I. Comparison of selectivity. Journal of Chromatography A, 2002, 972(1): 3–19

    CAS  Google Scholar 

  23. Lin F Y, Chen WY, Hearn M T W. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: Effects of salts, hydrophobicity of the sorbent, and structure of the protein. Analytical Chemistry, 2001, 73(16): 3875–3883 PMID:11534710

    Article  CAS  Google Scholar 

  24. Reubsaet J L E, Vieskar R. Characterisation of p–p interactions which determine retention of aromatic compounds in reversedphase liquid chromatography. Journal of Chromatography A, 1999, 841(2): 147–154

    Article  CAS  Google Scholar 

  25. Selditz U, Copinga S, Franke J P, et al. Impact of substituents on the enantioseparation of racemic 2-amidotetralins on polysaccharide stationary phases. 1. Chiralcel OD. Chirality, 1996, 8(8): 574–578

    Article  CAS  Google Scholar 

  26. Reubsaet J L E, Jinno K. Characterisation of important interactions controlling retention behaviour of analytes in reversed-phase high-performance liquid chromatography. TrAC-Trends in Analytical Chemistry, 1998, 17(3): 157–166

    Article  CAS  Google Scholar 

  27. Peng R, Chen X, Ghosh R. Preparation of graphene oxide-cotton fiber composite adsorbent and its application for the purification of polyphenols from pomegranate peel extract. Separation and Purification Technology, 2017, 174: 561–569

    Article  CAS  Google Scholar 

  28. Dias-Cabral A C, Ferreira A S, Phillips J, et al. The effects of ligand chain length, salt concentration and temperature on the adsorption of bovine serum albumin onto polypropyleneglycol- Sepharose. Biomedical Chromatography, 2005, 19(8): 606–616

    Article  CAS  Google Scholar 

  29. Hjerten S, Rosengren J, Pahlman S. Hydrophobic interaction chromatography–Synthesis and use of some alkyl and aryl derivatives of agarose. Journal of Chromatography, 1974, 101 (2): 281–288

    Article  CAS  Google Scholar 

  30. Lin F Y, Chen W Y, Ruaan R C, et al. Microcalorimetric studies of interactions between protein and hydrophobic ligands in hydrophobic interaction chromatography: effects of ligand chain length, density, and the amount of bound protein. In: Endo I, Nagamune T, Katoh S, et al., eds. Progress in Biotechnology, 2000, 16(C): 59–62

  31. Arakawa T, Timasheff S N. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry, 1984, 23(25): 5912–5923

    Article  CAS  Google Scholar 

  32. Baldwin R L. How Hofmeister ion interactions affect protein stability. Biophysical Journal, 1996, 71(4): 2056–2063

    Article  CAS  Google Scholar 

  33. Porath J. Salt-promoted adsorption–recent developments. Journal of Chromatography, 1986, 376: 331–341

    Article  CAS  Google Scholar 

  34. Tadeo X, López-Méndez B, Castaño D, et al. Protein stabilization and the Hofmeister effect: the role of hydrophobic solvation. Biophysical Journal, 2009, 97(9): 2595–2603

    Article  CAS  Google Scholar 

  35. Perkins T W, Mak D S, Root T W, et al. Protein retention in hydrophobic interaction chromatography: Modeling variation with buffer ionic strength and column hydrophobicity. Journal of Chromatography A, 1997, 766(1–2): 1–14

    CAS  Google Scholar 

  36. Kalra A, Tugcu N, Cramer S M, et al. Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. The Journal of Physical Chemistry B, 2001, 105(27): 6380–6386

    Article  CAS  Google Scholar 

  37. Muca R, Marek W, Piatkowski W, et al. Influence of the samplesolvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography. Journal of Chromatography A, 2010, 1217(17): 2812–2820

    Article  CAS  Google Scholar 

  38. Xiao Y, Jones T T, Laurent A H, et al. Protein instability during HIC: hydrogen exchange labeling analysis and a framework for describing mobile and stationary phase effects. Biotechnology and Bioengineering, 2007, 96(1): 80–93

    Article  CAS  Google Scholar 

  39. Nfor B K, Hylkema N N, Wiedhaup K R, et al. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation. Journal of Chromatography A, 2011, 1218(49): 8958–8973

    Article  CAS  Google Scholar 

  40. Hwang S M, Kang H J, Bae S W, et al. Refolding of lysozyme in hydrophobic interaction chromatography: Effects of hydrophobicity of adsorbent and salt concentration in mobile phase. Biotechnology and Bioprocess Engineering, 2010, 15(2): 213–219

    Article  CAS  Google Scholar 

  41. El Rassi Z. Recent progress in reversed-phase and hydrophobic interaction chromatography of carbohydrate species. Journal of Chromatography A, 1996, 720(1–2): 93–118

    Article  CAS  Google Scholar 

  42. Dias-Cabral A C, Queiroz J A, Pinto N G. Effect of salts and temperature on the adsorption of bovine serum albumin on polypropylene glycol-Sepharose under linear and overloaded chromatographic conditions. Journal of Chromatography A, 2003, 1018(2): 137–153

    Article  CAS  Google Scholar 

  43. Jungbauer A, Machold C, Hahn R. Hydrophobic interaction chromatography of proteins–III. Unfolding of proteins upon adsorption. Journal of Chromatography A, 2005, 1079(1–2): 221–228

    CAS  Google Scholar 

  44. Wei Y, Yao C, Zhao J, et al. Influences of the mobile phase composition and temperature on the retention behavior of aromatic alcohol homologues in hydrophobic interaction chromatography. Chromatographia, 2002, 55(11–12): 659–665

    Article  CAS  Google Scholar 

  45. Muca R, Piatkowski W, Antos D. Altering efficiency of hydrophobic interaction chromatography by combined salt and temperature effects. Journal of Chromatography A, 2009, 1216 (50): 8712–8721

    Article  CAS  Google Scholar 

  46. Huang H M, Lin F Y, Chen W Y, et al. Isothermal titration microcalorimetric studies of the effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents. Journal of Colloid and Interface Science, 2000, 229 (2): 600–606

    Article  CAS  Google Scholar 

  47. Guo W, Ruckenstein E. A new matrix for membrane affinity chromatography and its application to the purification of concanavalin A. Journal of Membrane Science, 2001, 182(1–2): 227–234

    Article  CAS  Google Scholar 

  48. Guo W, Ruckenstein E. Separation and purification of horseradish peroxidase by membrane affinity chromatography. Journal of Membrane Science, 2003, 211(1): 101–111

    Article  CAS  Google Scholar 

  49. Li S, Wang L, Yang J, et al. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography. Journal of Separation Science, 2016, 39(11): 2050–2056

    Article  CAS  Google Scholar 

  50. Rodrigues E S, Verinaud C I, Oliveira D S, et al. Purification of coagulation factor VIII by immobilized metal affinity chromatography. Biotechnology and Applied Biochemistry, 2015, 62(3): 343–348

    Article  CAS  Google Scholar 

  51. Mönster A, Hiller O, Grüger D, et al. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns. Journal of Chromatography A, 2011, 1218(5): 706–710

    Article  CAS  Google Scholar 

  52. Besselink T, Janssen A E M, Boom R M. Isolation of bovine serum albumin from whey using affinity chromatography. International Dairy Journal, 2015, 41: 32–37

    Article  CAS  Google Scholar 

  53. Zhao W W, Liu F F, Shi Q H, et al. Octapeptide-based affinity chromatography of human immunoglobulin G: Comparisons of three different ligands. Journal of Chromatography A, 2014, 1359: 100–111

    Article  CAS  Google Scholar 

  54. Lorin V, Mouquet H. Efficient generation of human IgA monoclonal antibodies. Journal of Immunological Methods, 2015, 422: 102–110

    Article  CAS  Google Scholar 

  55. Wang Z, Liang Q, Wen K, et al. Antibody purification using affinity chromatography: a case study with a monoclonal antibody to ractopamine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 971: 10–13

    Article  CAS  Google Scholar 

  56. Arakawa T, Philo J S, Tsumoto K, et al. Elution of antibodies from a Protein-A column by aqueous arginine solutions. Protein Expression and Purification, 2004, 36(2): 244–248

    Article  CAS  Google Scholar 

  57. Sarciaux J M, Mansour S, Hageman M J, et al. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying. Journal of Pharmaceutical Sciences, 1999, 88(12): 1354–1361

    Article  CAS  Google Scholar 

  58. Jiskoot W, Bloemendal M, van Haeringen B, et al. Nonrandom conformation of a mouse IgG2a monoclonal-antibody at low pH. European Journal of Biochemistry, 1991, 201(1): 223–232

    Article  CAS  Google Scholar 

  59. Gagnon P, Nian R, Leong D, et al. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography. Journal of Chromatography A, 2015, 1395: 136–142

    Article  CAS  Google Scholar 

  60. Hahn R, Shimahara K, Steindl F, et al. Comparison of protein A affinity sorbents III. Life time study. Journal of Chromatography A, 2006, 1102(1–2): 224–231

    CAS  Google Scholar 

  61. Gómez M I, Lee A, Reddy B, et al. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nature Medicine, 2004, 10(8): 842–848

    Article  CAS  Google Scholar 

  62. Carter-Franklin J N, Victa C, McDonald P, et al. Fragments of protein A eluted during protein A affinity chromatography. Journal of Chromatography A, 2007, 1163(1–2): 105–111

    Article  CAS  Google Scholar 

  63. Sadavarte R, Spearman M, Okun N, et al. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography. Biotechnology and Bioengineering, 2014, 111(6): 1139–1149

    Article  CAS  Google Scholar 

  64. Ghose S, Tao Y, Conley L, et al. Purification of monoclonal antibodies by hydrophobic interaction chromatography under nosalt conditions. mAbs, 2013, 5(5): 795–800

    Article  Google Scholar 

  65. Kawai T, Saito K, Lee W. Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 790(1–2): 131–142

    Article  CAS  Google Scholar 

  66. Li H, Yang Y, Zhang Y, et al. A hydrophobic interaction chromatography strategy for purification of inactivated foot-andmouth disease virus. Protein Expression and Purification, 2015, 113: 23–29

    Article  CAS  Google Scholar 

  67. Zhang S, Sun Y. Further studies on the contribution of electrostatic and hydrophobic interactions to protein adsorption on dye-ligand adsorbents. Biotechnology and Bioengineering, 2001, 75(6): 710–717

    Article  CAS  Google Scholar 

  68. Chen W Y, Liu Z C, Lin P H, et al. The hydrophobic interactions of the ion-exchanger resin ligands with proteins at high salt concentrations by adsorption isotherms and isothermal titration calorimetry. Separation and Purification Technology, 2007, 54 (2): 212–219

    Article  CAS  Google Scholar 

  69. Zhao K, Yang F, Xia H, et al. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry. Journal of Separation Science, 2015, 38(5): 703–710

    Article  CAS  Google Scholar 

  70. Zhao K, Yang L, Wang X, et al. Preparation of a novel dualfunction strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation. Talanta, 2012, 98: 86–94

    Article  CAS  Google Scholar 

  71. Wang J, Jenkins E W, Robinson J R, et al. A new multimodal membrane adsorber for monoclonal antibody purifications. Journal of Membrane Science, 2015, 492: 137–146

    Article  CAS  Google Scholar 

  72. Murphy P J M, Stone O J, Anderson M E. Automated hydrophobic interaction chromatography column selection for use in protein purification. Journal of Visualized Experiments, 2011, (55): e3060

    Google Scholar 

  73. Marek W, Muca R, Wos S, et al. Isolation of monoclonal antibody from a Chinese hamster ovary supernatant. I: assessment of different separation concepts. Journal of Chromatography A, 2013, 1305: 55–63

    CAS  Google Scholar 

  74. Puthirasigamany M, Hamm I, van Winssen F A, et al. Purification of biomolecules combining ATPS and membrane chromatography. Food and Bioproducts Processing, 2014, 92 (C2): 152–160

    Article  CAS  Google Scholar 

  75. Vu A T, Wang X, Wickramasinghe S R, et al. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography. Journal of Separation Science, 2015, 38(16): 2819–2825

    Article  CAS  Google Scholar 

  76. Zhu X Y, Zheng Z J, Xie J, et al. Selective separation of magnolol using molecularly imprinted membranes. Journal of Separation Science, 2012, 35(2): 315–319

    Article  CAS  Google Scholar 

  77. Fan J X, Luo J Q, Song W J, et al. Directing membrane chromatography to manufacture a1-antitrypsin from human plasma fraction IV. Journal of Chromatography A, 2015, 1423: 63–70

    Article  CAS  Google Scholar 

  78. Ji J, Liu F, Hashim N A, et al. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. Reactive & Functional Polymers, 2015, 86: 134–153

    Article  CAS  Google Scholar 

  79. Kubota N, Kounosu M, Saito K, et al. Preparation of a hydrophobic porous membrane containing phenyl groups and its protein adsorption performance. Journal of Chromatography A, 1995, 718(1): 27–34

    Article  CAS  Google Scholar 

  80. Reddy A V R, Patel H R. Chemically treated polyethersulfone/ polyacrylonitrile blend ultrafiltration membranes for better fouling resistance. Desalination, 2008, 221(1–3): 318–323

    Article  CAS  Google Scholar 

  81. Ma Z, Lan Z, Matsuura T, et al. Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877(29): 3686–3694

    Article  CAS  Google Scholar 

  82. Yusof A H M, Ulbricht M. Polypropylene-based membrane adsorbers via photo-initiated graft copolymerization: Optimizing separation performance by preparation conditions. Journal of Membrane Science, 2008, 311(1–2): 294–305

    Article  CAS  Google Scholar 

  83. Shen Y W, Hsu P H, Unnikrishnan B, et al. Membrane-based assay for iodide ions based on anti-leaching of gold nanoparticles. ACS Applied Materials & Interfaces, 2014, 6(4): 2576–2582

    Article  CAS  Google Scholar 

  84. Escobar I C, Van der Bruggen B. Microfiltration and ultrafiltration membrane science and technology. Journal of Applied Polymer Science, 2015, 132(21): 42002

    Article  CAS  Google Scholar 

  85. Liu Y, Feng Z, Shao Z, et al. Chitosan-based membrane chromatography for protein adsorption and separation. Materials Science and Engineering C, 2012, 32(6): 1669–1673

    Article  CAS  Google Scholar 

  86. Ju J, He G, Duan Z, et al. Improvement of bilirubin adsorption capacity of cellulose acetate/polyethyleneimine membrane using sodium deoxycholate. Biochemical Engineering Journal, 2013, 79: 144–152

    Article  CAS  Google Scholar 

  87. Saxena A, Tripathi B P, Kumar M, et al. Membrane-based techniques for the separation and purification of proteins: an overview. Advances in Colloid and Interface Science, 2009, 145 (1–2): 1–22

    Article  CAS  Google Scholar 

  88. Orr V, Zhong L, Moo-Young M, et al. Recent advances in bioprocessing application of membrane chromatography. Biotechnology Advances, 2013, 31(4): 450–465

    Article  CAS  Google Scholar 

  89. Li Y, Chung T S, Chan S Y. High-affinity sulfonated materials with transition metal counterions for enhanced protein separation in dual-layer hollow fiber membrane chromatography. Journal of Chromatography A, 2008, 1187(1–2): 285–288

    Article  CAS  Google Scholar 

  90. Li Y, Chung T S. Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation. Journal of Membrane Science, 2008, 309(1–2): 45–55

    Article  CAS  Google Scholar 

  91. Sousa A, Sousa F, Queiroz J A. Advances in chromatographic supports for pharmaceutical-grade plasmid DNA purification. Journal of Separation Science, 2012, 35(22): 3046–3058

    Article  CAS  Google Scholar 

  92. Wickramasinghe S R, Carlson J O, Teske C, et al. Characterizing solute binding to macroporous ion exchange membrane adsorbers using confocal laser scanning microscopy. Journal of Membrane Science, 2006, 281(1–2): 609–618

    Article  CAS  Google Scholar 

  93. Ahmad A L, Lah N F C, Ismail S, et al. Membrane antifouling methods and alternatives: ultrasound approach. Separation and Purification Reviews, 2012, 41(4): 318–346

    Article  Google Scholar 

  94. Wang L, Ghosh R. Fractionation of monoclonal antibody aggregates using membrane chromatography. Journal of Membrane Science, 2008, 318(1–2): 311–316

    Article  CAS  Google Scholar 

  95. Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 2009, 342(1–2): 97–104

    Article  CAS  Google Scholar 

  96. Ghosh R. Separation of human albumin and IgG by a membranebased integrated bioseparation technique involving simultaneous precipitation, microfiltration and membrane adsorption. Journal of Membrane Science, 2004, 237(1–2): 109–117

    Article  CAS  Google Scholar 

  97. Ghosh R. Fractionation of human plasma proteins by hydrophobic interaction membrane chromatography. Journal of Membrane Science, 2005, 260(1–2): 112–118

    Article  CAS  Google Scholar 

  98. Liu F, Xu Y Y, Zhu B K, et al. Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes. Journal of Membrane Science, 2009, 345(1–2): 331–339

    Article  CAS  Google Scholar 

  99. Venault A, Liu Y H, Wu J R, et al. Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/ polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science, 2014, 450: 340–350

    Article  CAS  Google Scholar 

  100. Kang G D, Cao Y M. Application and modification of poly (vinylidene fluoride) (PVDF) membranes-A review. Journal of Membrane Science, 2014, 463: 145–165

    Article  CAS  Google Scholar 

  101. Yang L, Wei J F, Zhao K Y, et al. Preparation of a hydrophilic PVDF membranes by electron beam induced grafting polymerization of acrylic acid. Advanced Materials Research, 2013, 625: 273–276

    Article  CAS  Google Scholar 

  102. Yang L, Chen P. Chitosan/coarse filter paper composite membrane for fast purification of IgG from human serum. Journal of Membrane Science, 2002, 205(1–2): 141–153

    Article  CAS  Google Scholar 

  103. Yu D, Chen X, Pelton R, et al. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody. Biotechnology and Bioengineering, 2008, 99(6): 1434–1442

    Article  CAS  Google Scholar 

  104. Singh R N, Akimenko V K. Synergism among three purified cellulolytic components of Clostridium thermocellum. FEMS Microbiology Letters, 1994, 122(3): 257–261

    Article  CAS  Google Scholar 

  105. Ackerman A H, Hurtubise R J. Solid-matrix fluorescence and phosphorescence and solid-phase microextraction of polycyclic aromatic hydrocarbons with hydrophobic paper. Applied Spectroscopy, 1999, 53(7): 770–775

    Article  CAS  Google Scholar 

  106. Mansur-Azzam N, Woo S G, Eisenberg A, et al. Binder-block copolymer micelle interactions in bactericidal filter paper. Langmuir, 2013, 29(31): 9783–9789

    Article  CAS  Google Scholar 

  107. Tjioe S W, Hurtubise R J. Solid-matrix fluorescence and phosphorescence detection and characterization of benzo[a] pyrene-DNA adducts with Whatman no. 1 and Whatman 1PS filter paper. Applied Spectroscopy, 1998, 52(3): 414–419

    Article  CAS  Google Scholar 

  108. Ruckenstein E, Guo W. Cellulose and glass fiber affinity membranes for the chromatographic separation of biomolecules. Biotechnology Progress, 2004, 20(1): 13–25

    Article  CAS  Google Scholar 

  109. Guo W, Shang Z, Yu Y, et al. Removal of endotoxin from aqueous solutions by affinity membrane. Biomedical Chromatography, 1997, 11(3): 164–166

    Article  CAS  Google Scholar 

  110. Yang L, Hsiao W W, Chen P. Chitosan-cellulose composite membrane for affinity purification of biopolymers and immunoadsorption. Journal of Membrane Science, 2002, 197(1–2): 185–197

    Article  CAS  Google Scholar 

  111. Guo W, Ruckenstein E. Crosslinked mercerized cellulose membranes for the affinity chromatography of papain inhibitors. Journal of Membrane Science, 2002, 197(1–2): 53–62

    Article  CAS  Google Scholar 

  112. Mah K Z, Ghosh R. Paper-based composite lyotropic saltresponsive membranes for chromatographic separation of proteins. Journal of Membrane Science, 2010, 360(1–2): 149–154

    Article  CAS  Google Scholar 

  113. Wu Q, Wang R, Chen X, et al. Temperature-responsive membrane for hydrophobic interaction based chromatographic separation of proteins in bind-and-elute mode. Journal of Membrane Science, 2014, 471: 56–64

    Article  CAS  Google Scholar 

  114. Wu Q, Wang R, Zhou Y, et al. Poly(N-isopropylacrylamide)- grafted dual stimuli-responsive filter paper for protein separation. Chinese Journal of Polymer Science, 2015, 33(7): 1048–1057

    Article  CAS  Google Scholar 

  115. Qadir D, Mukhtar H, Keong L K. Mixed matrix membranes for water purification applications. Separation and Purification Reviews, 2017, 46(1): 62–80

    Article  Google Scholar 

  116. Kuczewski M, Fraud N, Faber R, et al. Development of a polishing step using a hydrophobic interaction membrane adsorber with a PER.C6-derived recombinant antibody. Biotechnology and Bioengineering, 2010, 105(2): 296–305

    Article  CAS  Google Scholar 

  117. Ren J, Yao P, Chen J, et al. Salt-independent hydrophobic displacement chromatography for antibody purification using cyclodextrin as supermolecular displacer. Journal of Chromatography A, 2014, 1369: 98–104

    Article  CAS  Google Scholar 

  118. Chen J, Luo Q, Breneman C M, et al. Classification of protein adsorption and recovery at low salt conditions in hydrophobic interaction chromatographic systems. Journal of Chromatography A, 2007, 1139(2): 236–246

    Article  CAS  Google Scholar 

  119. Yang Y, Qu Q, Li W, et al. Preparation of a silica-based highperformance hydrophobic interaction chromatography stationary phase for protein separation and renaturation. Journal of Separation Science, 2016, 39(13): 2481–2490

    Article  CAS  Google Scholar 

  120. Poplewska I, Piatkowski W, Antos D. Overcoming solubility limits in overloaded gradient hydrophobic interaction chromatography. Journal of Chromatography A, 2015, 1386: 1–12

    Article  CAS  Google Scholar 

  121. Himstedt H H, Qian X, Weaver J R, et al. Responsive membranes for hydrophobic interaction chromatography. Journal of Membrane Science, 2013, 447: 335–344

    Article  CAS  Google Scholar 

  122. Kikuchi A, Okano T. Intelligent thermosresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science, 2002, 27(6): 1165–1193

    Article  CAS  Google Scholar 

  123. Ghosh R, Madadkar P, Wu Q. On the workings of laterally-fed membrane chromatography. Journal of Membrane Science, 2016, 516: 26–32

    Article  CAS  Google Scholar 

  124. Ivanov A E, Zhigis L S, Kurganova E V, et al. Effect of temperature upon the chromatography of proteins on porous glass, chemically coated with N-isopropylacrylamide copolymer. Journal of Chromatography A, 1997, 776(1): 75–80

    Article  CAS  Google Scholar 

  125. Ivanov A E, Zubov V P. Smart polymers as surface modifiers for bioanalytical devices and biomaterials: theory and practice. Russian Chemical Reviews, 2016, 85(6): 565–584

    Article  CAS  Google Scholar 

  126. Qi H, Cao J, Xin Y, et al. Dual responsive zein hydrogel membrane with selective protein adsorption and sustained release property. Materials Science and Engineering C: Materials for Biological Applications, 2017, 70(Pt 1): 347–356

    CAS  Google Scholar 

  127. Zhao L, Zhang H, Liu Z. Functional surface modification of PVDF membrane for chemical pulse cleaning. Journal of Membrane Science, 2016, 524: 389–399

    Google Scholar 

  128. You M, Wang P, Xu M, et al. Fouling resistance and cleaning efficiency of stimuli-responsive reverse osmosis (RO) membranes. Polymer, 2016, 103: 457–467

    Article  CAS  Google Scholar 

  129. Salehi S M, Di Profio G, Fontananova E, et al. Membrane distillation by novel hydrogel composite membranes. Journal of Membrane Science, 2016, 504: 220–229

    Article  CAS  Google Scholar 

  130. Lucantonio A, Teresi L, Desimone A. Continuum theory of swelling material surfaces with applications to thermo-responsive gel membranes and surface mass transport. Journal of the Mechanics and Physics of Solids, 2016, 89: 96–109

    Article  CAS  Google Scholar 

  131. Kursun F, Isiklan N. Development of thermo-responsive poly (vinyl alcohol)-g-poly(N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. Journal of Industrial and Engineering Chemistry, 2016, 41: 91–104

    Article  CAS  Google Scholar 

  132. Yuan X, Li W, Zhu Z, et al. Thermo-responsive PVDF/PSMA composite membranes with micro/nanoscale hierarchical structures for oil/water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516: 305–316

    Article  CAS  Google Scholar 

  133. Darvishmanesh S, Qian X, Wickramasinghe S R. Responsive membranes for advanced separations. Current Opinion in Chemical Engineering, 2015, 8: 98–104

    Article  Google Scholar 

  134. Teal H E, Hu Z, Root D D. Native purification of biomolecules with temperature-mediated hydrophobic modulation liquid chromatography. Analytical Biochemistry, 2000, 283(2): 159–165

    Article  CAS  Google Scholar 

  135. Yoshizako K, Akiyama Y, Yamanaka H, et al. Regulation of protein binding toward a ligand on chromatographic matrixes by masking and forced-releasing effects using thermoresponsive polymer. Analytical Chemistry, 2002, 74(16): 4160–4166

    Article  CAS  Google Scholar 

  136. Pelton R H, Chibante P. Preparation of aqueous lattices with Nisopropylacrylamide. Colloids and Surfaces, 1986, 20(3): 247–256

    Article  CAS  Google Scholar 

  137. Lin S C, Lin K L, Chiu H C, et al. Enhanced protein renaturation by temperature-responsive polymers. Biotechnology and Bioengineering, 2000, 67(5): 505–512

    Article  CAS  Google Scholar 

  138. Kanazawa H, Kashiwase Y, Yamamoto K, et al. Temperatureresponsive liquid chromatography. 2. Effects of hydrophobic groups in N-isopropylacrylamide copolymer-modified silica. Analytical Chemistry, 1997, 69(5): 823–830

    CAS  Google Scholar 

  139. Zheng S, Shi S, Xia Y, et al. Study on micellization of poly(Nisopropylacrylamide- butyl acrylate) macromonomers in aqueous solution. Journal of Applied Polymer Science, 2010, 118: 671–677

    Article  CAS  Google Scholar 

  140. Kanazawa H, Sunamoto T, Matsushima Y, et al. Temperatureresponsive chromatographic separation of amino acid phenylthiohydantions using aqueous media as the mobile phase. Analytical Chemistry, 2000, 72(24): 5961–5966

    Article  CAS  Google Scholar 

  141. Mah K Z, Ghosh R. Paper-based composite lyotropic saltresponsive membranes for chromatographic separation of proteins. Journal of Membrane Science, 2010, 360(1–2): 149–154

    Article  CAS  Google Scholar 

  142. Chen Y C, Xie R, Chu L Y. Stimuli-responsive gating membranes responding to temperature, pH, salt concentration and anion species. Journal of Membrane Science, 2013, 442: 206–215

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Natural Science Foundation of China (Grant No. 20874004) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Peng, R. & Chen, X. Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved. Front. Mater. Sci. 11, 197–214 (2017). https://doi.org/10.1007/s11706-017-0390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-017-0390-z

Keywords

Navigation