Skip to main content
Log in

Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics

  • PAPER IN FOREFRONT
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

While metabolomics is increasingly used to investigate the food metabolome and identify new markers of food exposure, limited attention has been given to the validation of such markers. The main objectives of the present study were to (1) discover potential food exposure markers (PEMs) for a range of plant foods in a study setting with a mixed dietary background and (2) validate PEMs found in a previous meal study. Three-day weighed dietary records and 24-h urine samples were collected three times during a 6-month parallel intervention study from 107 subjects randomized to two distinct dietary patterns. An untargeted UPLC-qTOF-MS metabolomics analysis was performed on the urine samples, and all features detected underwent strict data analyses, including an iterative paired t test and sensitivity and specificity analyses for foods. A total of 22 unique PEMs were identified that covered 7 out of 40 investigated food groups (strawberry, cabbages, beetroot, walnut, citrus, green beans and chocolate). The PEMs reflected foods with a distinct composition rather than foods eaten more frequently or in larger amounts. We found that 23 % of the PEMs found in a previous meal study were also valid in the present intervention study. The study demonstrates that it is possible to discover and validate PEMs for several foods and food classes in an intervention study with a mixed dietary background, despite the large variability in such a dataset. Final validation of PEMs for intake of foods should be performed by quantitative analysis.

Examples of two urinary exposure markers for cabbage (left) and beetroot (right) found in the study from an untargeted LC‐MS metabolomics analysis of urine samples and self‐reported food intake data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Favé G, Beckmann ME, Draper JH, Mathers JC (2009) Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? Genes Nutr 4:135–141

    Article  Google Scholar 

  2. Bingham SA (2002) Biomarkers in nutritional epidemiology. Public Health Nutr 5:821–827

    Article  Google Scholar 

  3. Primrose S, Draper J, Elsom R, Kirkpatrick V, Mathers JC, Seal C, Beckmann M, Haldar S, Beattie JH, Lodge JK, Jenab M, Keun H, Scalbert A (2011) Metabolomics and human nutrition. Br J Nutr 105:1277–1283

    Article  Google Scholar 

  4. Llorach R, Garcia-Aloy M, Tulipani S, Vazquez-Fresno R, Andres-Lacueva C (2012) Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. J Agric Food Chem 60:8797–8808

    Article  CAS  Google Scholar 

  5. Penn L, Boeing H, Boushey CJ, Dragsted LO, Kaput J, Scalbert A, Welch A, Mathers J (2010) Assessment of dietary intake: NuGO symposium report. Genes Nutr 5:205–213

    Article  CAS  Google Scholar 

  6. Llorach R, Urpi-Sarda M, Jáuregui O, Monagas M, Andres-Lacueva C (2009) An LC-MS- based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res 8:5060–5068

    Article  CAS  Google Scholar 

  7. Tulipani S, Llorach R, Jáuregui O, López-Uriarte P, Garcia-Aloy M, Bullo M, Salas-Salvadó J, Andrés-Lacueva C (2011) Metabolomics unveils urinary changes in subjects with metabolic syndrome following 12-week nut consumption. J Proteome Res 10:5047–5058

    Article  CAS  Google Scholar 

  8. Lodge JK (2010) Symposium 2: Modern approaches to nutritional research challenges: targeted and non-targeted approaches for metabolite profiling in nutritional research. Proc Nutr Soc 69:95–102

    Article  CAS  Google Scholar 

  9. Spencer JPE, Abd El Mohsen MM, Minihane A, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99:12–22

    CAS  Google Scholar 

  10. Andersen MS, Reinbach HC, Rinnan Å, Barri T, Mithril C, Dragsted LO (2013) Discovery of exposure markers in urine for Brassica-containing meals served with different protein sources by UPLC-qTOF-MS untargeted metabolomics. Metabolomics 9:984–997

    Article  CAS  Google Scholar 

  11. Mithril C, Dragsted LO, Meyer C, Tetens I, Biltoft-Jensen A, Astrup A (2013) Dietary composition and nutrient content of the New Nordic Diet. Public Health Nutr 16:777–785

    Article  Google Scholar 

  12. Poulsen SP, Due A, Jordy AB, Stark KD, Stender S, Holst C, Astrup A, Larsen TM (2013) Health effect of the New Nordic Diet in adults with increased waist circumference: a 6-mo randomized controlled trial. Am J Clin Nutr. doi:10.3945/ajcn.113.069393

  13. Barri T, Holmer-Jensen J, Hermansen K, Dragsted LO (2012) Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage. Anal Chim Acta 718:47–57

    Article  CAS  Google Scholar 

  14. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma 11:395–404

    Article  Google Scholar 

  15. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78:567–574

    Article  CAS  Google Scholar 

  16. Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc B 64:479–498

    Article  Google Scholar 

  17. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    Article  CAS  Google Scholar 

  18. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  Google Scholar 

  19. Gerlich M, Neumann S (2013) MetFusion: integration of compound identification strategies. J Mass Spectrom 48:291–298

    Article  CAS  Google Scholar 

  20. Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford). doi:10.1093/database/bap024

    Google Scholar 

  21. Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1–e12

    Article  CAS  Google Scholar 

  22. Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C, Fan T, Fiehn O, Goodacre R, Griffin J, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane A, Lindon J, Marriott P, Nicholls A, Reily M, Thaden J, Viant M (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

    Article  CAS  Google Scholar 

  23. Rago D, Mette K, Gürdeniz G, Marini F, Poulsen M, Dragsted LO (2013) A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome. Metabolomics. doi:10.1007/s11306-013-0534-9

    Google Scholar 

  24. Nelson AC, Huang W, Moody DE (2001) Variables in human liver microsome preparation: impact on the kinetics of l-alpha-acetylmethadol (LAAM) n-demethylation and dextromethorphan O-demethylation. Drug Metab Dispos 29:319–325

    CAS  Google Scholar 

  25. Wein M, Lavid N, Lunkenbein S, Lewinsohn E, Schwab W, Kaldenhoff R (2002) Isolation, cloning and expression of a multifunctional O-methyltransferase capable of forming 2,5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. Plant J 31:755–765

    Article  CAS  Google Scholar 

  26. Gonthier M, Cheynier V, Donovan JL, Manach C, Morand C, Mila I, Lapierre C, Rémésy C, Scalbert A (2003) Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. J Nutr 133:461–467

    CAS  Google Scholar 

  27. Bianchi F, Careri M, Musci M, Mangia A (2007) Fish and food safety: determination of formaldehyde in 12 fish species by SPME extraction and GC–MS analysis. Food Chem 100:1049–1053

    Article  CAS  Google Scholar 

  28. Bingham SA, Cassidy A, Cole TJ, Welch A, Runswick SA, Black AE, Thurnham D, Bates C, Khaw KT, Key TJA (1995) Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br J Nutr 73:531–550

    Article  CAS  Google Scholar 

  29. González-Molina E, Domínguez-Perles R, Moreno DA, García-Viguera C (2010) Natural bioactive compounds of Citrus limon for food and health. J Pharm Biomed Anal 51:327–345

    Article  Google Scholar 

  30. Vermeulen M, Van Den Berg R, Freidig AP, Van Bladeren PJ, Vaes WHJ (2006) Association between consumption of cruciferous vegetables and condiments and excretion in urine of isothiocyanate mercapturic acids. J Agric Food Chem 54:5350–5358

    Article  CAS  Google Scholar 

  31. Lloyd AJ, Beckmann M, Haldar S, Seal C, Brandt K, Draper J (2013) Data-driven strategy for the discovery of potential urinary biomarkers of habitual dietary exposure. Am J Clin Nutr 97:377–389

    Article  CAS  Google Scholar 

  32. González-Barrio R, Edwards CA, Crozier A (2011) Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: in vivo and in vitro studies. Drug Metab Dispos 39:1680–1688

    Article  Google Scholar 

  33. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas M, Kochhar S, Stamler J, Holmes E, Elliott P, Nicholson JK (2010) Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr 92:436–443

    Article  CAS  Google Scholar 

  34. Favé G, Beckmann M, Lloyd A, Zhou S, Harold G, Lin W, Tailliart K, Xie L, Draper J, Mathers J (2011) Development and validation of a standardized protocol to monitor human dietary exposure by metabolite fingerprinting of urine samples. Metabolomics 7:469–484

    Article  Google Scholar 

  35. Lloyd AJ, Beckmann M, Favé G, Mathers JC, Draper J (2011) Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Br J Nutr 106:812–824

    Article  CAS  Google Scholar 

  36. Pujos-Guillot E, Hubert J, Martin J, Lyan B, Quintana M, Claude S, Chabanas B, Rothwell JA, Bennetau-Pelissero C, Scalbert A, Comte B, Hercberg S, Morand C, Galan P, Manach C (2013) Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J Proteome Res 12:1645–1659

    Article  CAS  Google Scholar 

  37. Feldman JM, Lee EM (1985) Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr 42:639–643

    CAS  Google Scholar 

  38. Shively CA, Tarka SM Jr (1984) Methylxanthine composition and consumption patterns of cocoa and chocolate products. Prog Clin Biol Res 158:149–178

    CAS  Google Scholar 

  39. Rodopoulos N, Höjvall L, Norman A (1996) Elimination of theobromine metabolites in healthy adults. Scand J Clin Lab Invest 56:373–383

    Article  CAS  Google Scholar 

  40. Cornish HH, Christman AA (1957) A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem 228:315–323

    CAS  Google Scholar 

  41. Farag MA, Motaal AA (2010) Sulforaphane composition, cytotoxic and antioxidant activity of crucifer vegetables. J Adv Res 1:65–70

    Article  Google Scholar 

  42. Edmands WMB, Beckonert OP, Stella C, Campbell A, Lake BG, Lindon JC, Holmes E, Gooderham NJ (2011) Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J Proteome Res 10:4513–4521

    Article  CAS  Google Scholar 

  43. Rechner AR, Smith MA, Kuhnle G, Gibson GR, Debnam ES, Srai SKS, Moore KP, Rice-Evans CA (2004) Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 36:212–225

    Article  CAS  Google Scholar 

  44. Podsędek A, Sosnowska D, Redzynia M, Anders B (2006) Antioxidant capacity and content of Brassica oleracea dietary antioxidants. Int J Food Sci Technol 41:49–58

    Article  Google Scholar 

  45. Frank T, Stintzing FC, Carle R, Bitsch I, Quaas D, Straẞ G, Bitsch R, Netzel M (2005) Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol Res 52:290–297

    Article  CAS  Google Scholar 

  46. Walsh MC, Brennan L, Malthouse JPG, Roche HM, Gibney MJ (2006) Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 84:531–539

    CAS  Google Scholar 

  47. Rasmussen LG, Savorani F, Larsen TM, Dragsted LO, Astrup A, Engelsen SB (2011) Standardization of factors that influence human urine metabolomics. Metabolomics 2011(7):71–83

    Article  Google Scholar 

  48. Koulman A, Volmer DA (2008) Perspectives for metabolomics in human nutrition: an overview. Nutr Bull 33:324–330

    Article  Google Scholar 

Download references

Acknowledgments

The intervention study was conducted as part of the OPUS project. OPUS is an acronym of the Danish title of the project 'Optimal well-being, development and health for Danish children through a healthy New Nordic Diet' and is supported by a grant from the Nordea Foundation, Denmark. The authors would like thank Majbritt Hybholt for providing the food intake data and Daniela Rago, Ümmühan Celik and Bernard Lyan for their contribution to the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maj-Britt Schmidt Andersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, MB.S., Kristensen, M., Manach, C. et al. Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Anal Bioanal Chem 406, 1829–1844 (2014). https://doi.org/10.1007/s00216-013-7498-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7498-5

Keywords

Navigation