Skip to main content
Log in

Review of stationary phases for microelectromechanical systems in gas chromatography: feasibility and separations

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review covers the recent development of stationary phases for chip-based gas chromatography (GC). Portable systems for rapid and reliable analysis are urgently needed. One way to achieve this is to miniaturize the entire analysis. Because the column is the central component of the GC system and determines the feasibility and quality of separation, this review focuses on stationary phases reported in the literature and their use in different fields during the last two decades, with emphasis on different methods for introducing the stationary phase into the GC column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Brown PR, Grushka E (1993) Advances in Chromatography, vol 33. Marcel Dekker

  2. Olefirowicz TM, Ewing AG (1990) Capillary electrophoresis in 2 and 5 μm diameter capillaries: application to cytoplasmic analysis. Anal Chem 62(17):1872–1876. doi:10.1021/ac00216a026

    Article  CAS  Google Scholar 

  3. Swerdlow H, Zhang JZ, Chen DY, Harke HR, Grey R, Wu S, Dovichi NJ, Fuller C (1991) Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence. Anal Chem 63(24):2835–2841. doi:10.1021/ac00024a006

    Article  CAS  Google Scholar 

  4. Monnig CA, Jorgenson JW (1991) On-column sample gating for high-speed capillary zone electrophoresis. Anal Chem 63(8):802–807. doi:10.1021/ac00008a013

    Article  CAS  Google Scholar 

  5. Capillarity induced negative pressure of water plugs in nanochannels (2003) Nano Lett 1537:3

    Google Scholar 

  6. Capillary filling speed of water in nanochannels (2004) Appl Phys Lett 85(15):3274

    Article  Google Scholar 

  7. Wei-Cheng T, Chan HKL, Chia-Jung L, Pang SW, Zellers ET (2005) Multiple-stage microfabricated preconcentrator–focuser for micro gas chromatography system. J Microelectromech Syst 14(3):498–507. doi:10.1109/jmems.2005.844842

    Article  Google Scholar 

  8. Gràcia I et al (2008) Sub-ppm gas sensor detection via spiral μ-preconcentrator. Sensors Actuators B Chem 132(1):149–154. doi:10.1016/j.snb.2008.01.019

    Article  Google Scholar 

  9. Davis CE, Ho CK, Hughes RC, Thomas ML (2005) Enhanced detection of m-xylene using a preconcentrator with a chemiresistor sensor. Sensors Actuators B Chem 104(2):207–216. doi:10.1016/j.snb.2004.04.120

    Article  CAS  Google Scholar 

  10. Alfeeli B, Cho D, Ashraf-Khorassani M, Taylor LT, Agah M (2008) MEMS-based multi-inlet/outlet preconcentrator coated by inkjet printing of polymer adsorbents. Sensors Actuators B Chem 133(1):24–32. doi:10.1016/j.snb.2008.01.063

    Article  CAS  Google Scholar 

  11. Wei-Cheng T, Pang SW, Chia-Jung L, Zellers ET (2003) Microfabricated preconcentrator–focuser for a microscale gas chromatograph. J Microelectromech Syst 12(3):264–272. doi:10.1109/jmems.2003.811748

    Article  Google Scholar 

  12. Hope JL, Johnson KJ, Cavelti MA, Prazen BJ, Grate JW, Synovec RE (2003) High-speed gas chromatographic separations with diaphragm valve-based injection and chemometric analysis as a gas chromatographic “sensor”. Anal Chim Acta 490(1–2):223–230. doi:10.1016/S0003-2670(03)00670-6

    Article  CAS  Google Scholar 

  13. Nachef K, Bourouina T, Marty F, Danaie K, Bourlon B, Donzier E (2010) Microvalves for Natural-Gas Analysis With Poly Ether Ether Ketone Membranes. J Microelectromech Syst 19(4):973–981. doi:10.1109/jmems.2010.2055547

    Article  CAS  Google Scholar 

  14. Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. Sensors Actuators A Phys 21(1–3):203–206. doi:10.1016/0924-4247(90)85039-7

    Article  Google Scholar 

  15. van Lintel HTG, van De Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sensors Actuators 15(2):153–167. doi:10.1016/0250-6874(88)87005-7

    Article  Google Scholar 

  16. Van de Pol FCM, Van Lintel HTG, Elwenspoek M, Fluitman JHJ (1990) A thermopneumatic micropump based on micro-engineering techniques. Sensors Actuators A Phys 21(1–3):198–202. doi:10.1016/0924-4247(90)85038-6

    Google Scholar 

  17. Esashi M (1990) Integrated micro flow control systems. Sensors Actuators A Phys 21(1–3):161–167. doi:10.1016/0924-4247(90)85031-X

    Article  Google Scholar 

  18. Smith PA (2012) Person-portable gas chromatography: Rapid temperature program operation through resistive heating of columns with inherently low thermal mass properties. J Chromatogr A 1261:37–45. doi:10.1016/j.chroma.2012.06.051

    Article  CAS  Google Scholar 

  19. Wang A, Tolley HD, Lee ML (2012) Gas chromatography using resistive heating technology. J Chromatogr A 1261:46–57. doi:10.1016/j.chroma.2012.05.021

    Article  CAS  Google Scholar 

  20. Robertson JK (2001) A vertical micromachined resistive heater for a micro-gas separation column. Sensors Actuators A Phys 91(3):333–339. doi:10.1016/S0924-4247(01)00604-5

    Article  CAS  Google Scholar 

  21. Hong-seok N, Hesketh PJ, Frye-Mason GC (2002) Parylene gas chromatographic column for rapid thermal cycling. J Microelectromech Syst 11(6):718–725. doi:10.1109/jmems.2002.805052

    Article  Google Scholar 

  22. Lu C-J, Steinecker WH, Tian W-C, Oborny MC, Nichols JM, Agah M, Potkay JA, Chan HKL, Driscoll J, Sacks RD, Wise KD, Pang SW, Zellers ET (2005) First-generation hybrid MEMS gas chromatograph. Lab Chip 5(10):1123–1131

    Article  CAS  Google Scholar 

  23. Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS (1996) Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black − Polymer Resistors. Chem Mater 8(9):2298–2312. doi:10.1021/cm960036j

    Article  CAS  Google Scholar 

  24. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-Reactive Chemical Sensor Arrays. Chem Rev 100(7):2595–2626. doi:10.1021/cr980102w

    Article  CAS  Google Scholar 

  25. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science 307(5717):1942–1945. doi:10.1126/science.1109128

    Article  CAS  Google Scholar 

  26. Lewis PR, Manginell RP, Adkins DR, Kottenstette RJ, Wheeler DR, Sokolowski SS, Trudell DE, Byrnes JE, Okandan M, Bauer JM, Manley RG, Frye-Mason C (2006) Recent advancements in the gas-phase MicroChemLab. Sensors J IEEE 6(3):784–795. doi:10.1109/jsen.2006.874495

    Article  Google Scholar 

  27. Grate JW, Rose-Pehrsson SL, Venezky DL, Klusty M, Wohltjen H (1993) Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface acoustic wave sensors, automated sample preconcentration, and pattern recognition. Anal Chem 65(14):1868–1881. doi:10.1021/ac00062a011

    Article  CAS  Google Scholar 

  28. Grate JW (2000) Acoustic Wave Microsensor Arrays for Vapor Sensing. Chem Rev 100(7):2627–2648. doi:10.1021/cr980094j

    Article  CAS  Google Scholar 

  29. Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML (2006) Zeptogram-Scale Nanomechanical Mass Sensing. Nano Lett 6(4):583–586. doi:10.1021/nl052134m

    Article  CAS  Google Scholar 

  30. Chiu H-Y, Hung P, Postma HWC, Bockrath M (2008) Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators. Nano Lett 8(12):4342–4346. doi:10.1021/nl802181c

    Article  CAS  Google Scholar 

  31. Li M, Myers EB, Tang HX, Aldridge SJ, McCaig HC, Whiting JJ, Simonson RJ, Lewis NS, Roukes ML (2010) Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis. Nano Lett 10(10):3899–3903. doi:10.1021/nl101586s

    Article  CAS  Google Scholar 

  32. Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. Electron Devices. IEEE Trans 26(12):1880–1886. doi:10.1109/t-ed.1979.19791

    Article  Google Scholar 

  33. Terry SC (1975) A gas chromatography system fabricated on a silicon wafer using integrated circuit technology. Stanford University,

  34. Lambertus G, Elstro A, Sensenig K, Potkay J, Agah M, Scheuering S, Wise K, Dorman F, Sacks R (2004) Design, Fabrication, and Evaluation of Microfabricated Columns for Gas Chromatography. Anal Chem 76(9):2629–2637. doi:10.1021/ac030367x

    Article  CAS  Google Scholar 

  35. Lambertus G, Sacks R (2005) Stop-Flow Programmable Selectivity with a Dual-Column Ensemble of Microfabricated Etched Silicon Columns and Air as Carrier Gas. Anal Chem 77(7):2078–2084. doi:10.1021/ac040174p

    Article  CAS  Google Scholar 

  36. Lambertus GR, Fix CS, Reidy SM, Miller RA, Wheeler D, Nazarov E, Sacks R (2005) Silicon Microfabricated Column with Microfabricated Differential Mobility Spectrometer for GC Analysis of Volatile Organic Compounds. Anal Chem 77(23):7563–7571. doi:10.1021/ac051216s

    Article  CAS  Google Scholar 

  37. Azzouz I, Vial J, Thiébaut D, Sassiat P, Marty F, Danaie K, Bockrath M, Wong J, Haudebourg R, Bourlon B (2011) Comparaison de phases stationnaires originales adaptées aux colonnes de CPG sur puces. Spectra Analyse 82

  38. Grob K (1986) Making and Manipulating Capillary Columns for Gas Chromatography. In: Verlag AH (ed). Heidelberg, p 156

  39. Agah M, Lambertus GR, Sacks R, Wise K (2006) High-Speed MEMS-Based Gas Chromatography. J Microelectromech Syst 15(5):1371–1378. doi:10.1109/jmems.2006.879708

    Article  CAS  Google Scholar 

  40. Agah M, Lambertus GR, Sacks RD, Wise KD High-speed MEMS-based gas chromatography. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 13–15 Dec. 2004 2004. pp 27–30. doi:10.1109/iedm.2004.1419055

  41. Cai Q-Y, Zellers ET (2002) Dual-Chemiresistor GC Detector Employing Monolayer-Protected Metal Nanocluster Interfaces. Anal Chem 74(14):3533–3539. doi:10.1021/ac025554u

    Article  CAS  Google Scholar 

  42. Steinecker WH, Rowe M, Matzger A, Zellers ET (2003) Chemiresistor array with nanocluster interfaces as a micro-GC detector. In: TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems. 12th Int Conf 1342:1343–1346. doi:10.1109/sensor.2003.1217022

    Google Scholar 

  43. Nishino M, Takemori Y, Matsuoka S, Kanai M, Nishimoto T, Ueda M, Komori K (2009) Development of μGC (micro gas chromatography) with high performance micromachined chip column. IEEJ Trans Electr Electron Eng 4(3):358–364. doi:10.1002/tee.20418

    Article  Google Scholar 

  44. Radadia AD, Masel RI, Shannon MA, Jerrell JP, Cadwallader KR (2008) Micromachined GC Columns for Fast Separation of Organophosphonate and Organosulfur Compounds. Anal Chem 80(11):4087–4094. doi:10.1021/ac800212e

    Article  CAS  Google Scholar 

  45. Radadia AD, Masel RI, Strano MS, Shannon MA (2005) Cadwallader K n-Chip High Speed Gas Chromatograph (Gc) with Carbon Nanotube Sensors. AIChE Annual Meeting, Cincinnati

    Google Scholar 

  46. Potkay JA, Driscoll JA, Agah M, Sacks RD, Wise KD A high-performance microfabricated gas chromatography column. In: Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, 19–23 Jan. 2003. pp 395–398. doi:10.1109/memsys.2003.1189769

  47. Agah M, Potkay JA, Lambertus G, Sacks R, Wise KD (2005) High-performance temperature-programmed microfabricated gas chromatography columns. J Microelectromech Syst 14(5):1039–1050. doi:10.1109/jmems.2005.856648

    Article  Google Scholar 

  48. Sun J, Cui D, Li Y, Zhang L, Chen J, Li H, Chen X (2009) A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures. Sensors Actuators B Chem 141(2):431–435. doi:10.1016/j.snb.2009.06.047

    Article  CAS  Google Scholar 

  49. Nakai T, Nishiyama S, Shuzo M, Delaunay J-J, Yamada I (2009) Micro-fabricated semi-packed column for gas chromatography by using functionalized parylene as a stationary phase. J Micromech Microeng 19(6):065032

    Article  Google Scholar 

  50. Lee C-Y, Liu C-C, Chen S-C, Chiang C-M, Su Y-H, Kuo W-C (2011) High-performance MEMS-based gas chromatography column with integrated micro heater. Microsyst Technol 17(4):523–531. doi:10.1007/s00542-010-1165-y

    Article  CAS  Google Scholar 

  51. Halliday J, Lewis AC, Hamilton JF, Rhodes C, Bartle KD, Homewood P, Grenfell RJP, Goody B, Harling A, Brewer P, Vargha G, Milton MJT (2010) Lab-on-a-Chip GC for Environmental Research. LCGC EUROPE 23(10)

  52. Whiting JJ, Fix CS, Anderson JM, Staton AW, Manginell RP, Wheeler DR, Myers EB, Roukes ML, Simonson RJ High-speed two-dimensional gas chromatography using microfabricated GC columns combined with nanoelectromechanical mass sensors. In: Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, 21–25 June 2009 2009. pp 1666–1669. doi:10.1109/sensor.2009.5285751

  53. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  54. Li Q, Yuan D (2003) Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing. J Chromatogr A 1003(1–2):203–209. doi:10.1016/S0021-9673(03)00848-3

    Article  CAS  Google Scholar 

  55. Saridara C, Mitra S (2005) Chromatography on Self-Assembled Carbon Nanotubes. Anal Chem 77(21):7094–7097. doi:10.1021/ac050812j

    Article  CAS  Google Scholar 

  56. Kartsova LA, Makarov AA (2002) Properties of Carbon Materials and Their Use in Chromatography. Russ J Appl Chem 75(11):1725–1731. doi:10.1023/a:1022273028106

    Article  CAS  Google Scholar 

  57. Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395 (6705):878–881. doi:http://www.nature.com/nature/journal/v395/n6705/suppinfo/395878a0_S1.html

    Google Scholar 

  58. Stadermann M, McBrady AD, Dick B, Reid VR, Noy A, Synovec RE, Bakajin O (2006) Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels. Anal Chem 78(16):5639–5644. doi:10.1021/ac060266+

    Article  CAS  Google Scholar 

  59. Reid VR, Stadermann M, Bakajin O, Synovec RE (2009) High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. Talanta 77(4):1420–1425. doi:10.1016/j.talanta.2008.09.023

    Article  CAS  Google Scholar 

  60. Nakai T, Okawa J, Takada S, Shuzo M, Shiomi J, Delaunay J-J, Maruyama S, Yamada I (2009) Carbon Nanotube Stationary Phase in a Microfabricated Column for High-Performance Gas Chromatography. AIP Conf Proc 1137(1):249–252

    Article  CAS  Google Scholar 

  61. Radadia AD, Salehi-Khojin A, Masel RI, Shannon MA (2010) The effect of microcolumn geometry on the performance of micro-gas chromatography columns for chip scale gas analyzers. Sensors Actuators B Chem 150(1):456–464. doi:10.1016/j.snb.2010.07.002

    Article  CAS  Google Scholar 

  62. Yu C-J, Su C-L, Tseng W-L (2006) Separation of Acidic and Basic Proteins by Nanoparticle-Filled Capillary Electrophoresis. Anal Chem 78(23):8004–8010. doi:10.1021/ac061059c

    Article  CAS  Google Scholar 

  63. Bächmann K, Göttlicher B (1997) New particles as pseudostationary phase for electrokinetic chromatography. Chromatographia 45(1):249–254. doi:10.1007/bf02505567

    Article  Google Scholar 

  64. Ventra MD, Evoy S, Heflin JR (2004) Introduction to Nanoscale Science and Technology. Springer Science edn, Boston, MA. doi:10.1007/b119185

    Book  Google Scholar 

  65. Murrihy JP, Breadmore MC, Tan A, McEnery M, Alderman J, O’Mathuna C, O’Neill AP, O’Brien P, Advoldvic N, Haddad PR, Glennon JD (2001) Ion chromatography on-chip. J ChromatogrA 924(1–2):233–238

    Article  CAS  Google Scholar 

  66. Pumera M, Wang J, Grushka E, Polsky R (2001) Gold Nanoparticle-Enhanced Microchip Capillary Electrophoresis. Anal Chem 73(22):5625–5628. doi:10.1021/ac015589e

    Article  CAS  Google Scholar 

  67. Gross GM, Nelson DA, Grate JW, Synovec RE (2003) Monolayer-Protected Gold Nanoparticles as a Stationary Phase for Open Tubular Gas Chromatography. Anal Chem 75(17):4558–4564. doi:10.1021/ac030112j

    Article  CAS  Google Scholar 

  68. Gross GM, Grate JW, Synovec RE (2004) Development and evaluation of gold-centered monolayer protected nanoparticle stationary phases for gas chromatography. J Chromatogr A 1060(1–2):225–236

    CAS  Google Scholar 

  69. Gross GM, Grate JW, Synovec RE (2004) Monolayer-protected gold nanoparticles as an efficient stationary phase for open tubular gas chromatography using a square capillary: Model for chip-based gas chromatography in square cornered microfabricated channels. J Chromatogr A 1029(1–2):185–192

    Article  CAS  Google Scholar 

  70. Guihen E (2013) Nanoparticles in modern separation science. Trends Anal Chem 46:1–14. doi:10.1016/j.trac.2013.01.011

    Article  CAS  Google Scholar 

  71. Zareian-Jahromi MA, Agah M (2010) Microfabricated Gas Chromatography Columns With Monolayer-Protected Gold Stationary Phases. J Microelectromech Syst 19(2):294–304. doi:10.1109/jmems.2009.2038936

    Article  CAS  Google Scholar 

  72. Zareie H, Alfeeli B, Zareian-Jahromi MA, Agah M Self-patterned gold electroplated multicapillary separation columns. In: Sensors, 2010 IEEE, 1–4 Nov. 2010 2010. pp 1526–1529. doi:10.1109/icsens.2010.5690326

  73. Shakeel H, Agah M (2013) Self-Patterned Gold-Electroplated Multicapillary Gas Separation Columns With MPG Stationary Phases. J Microelectromech Syst 22(1):62–70. doi:10.1109/jmems.2012.2213068

    Article  CAS  Google Scholar 

  74. Shakeel H, Rice G, Agah M First reconfigurable MEMS separation columns for micro gas chromatography. In: Micro Electro Mechanical Systems (MEMS), 2012 I.E. 25th International Conference on, Jan. 29 2012–Feb. 2 2012 2012. pp 823–826. doi:10.1109/memsys.2012.6170312

  75. Garg N, Carrasquillo-Molina E, Lee TR (2002) Self-Assembled Monolayers Composed of Aromatic Thiols on Gold: Structural Characterization and Thermal Stability in Solution. Langmuir 18(7):2717–2726. doi:10.1021/la0115278

    Article  CAS  Google Scholar 

  76. Vial J, Thiébaut D, Marty F, Guibal P, Haudebourg R, Nachef K, Danaie K, Bourlon B (2011) Silica sputtering as a novel collective stationary phase deposition for microelectromechanical system gas chromatography column: Feasibility and first separations. J Chromatogr A 1218(21):3262–3266. doi:10.1016/j.chroma.2010.12.035

    Article  CAS  Google Scholar 

  77. Ali S, Ashraf-Khorassani M, Taylor LT, Agah M (2009) MEMS-based semi-packed gas chromatography columns. Sensors Actuators B Chem 141(1):309–315. doi:10.1016/j.snb.2009.06.022

    Article  CAS  Google Scholar 

  78. Nishiyama S, Nakai T, Shuzo M, Delaunay JJ, Yamada I Effect of micropillar density on separation efficiency of semi-packed micro gas chromatographic columns. In: Sensors, 2009 IEEE, 25–28 Oct. 2009 2009. pp 1935–1938. doi:10.1109/icsens.2009.5398351

  79. Haudebourg R, Vial J, Thiebaut D, Danaie K, Breviere J, Sassiat P, Azzouz I, Bourlon B (2012) Temperature-Programmed Sputtered Micromachined Gas Chromatography Columns: An Approach to Fast Separations in Oilfield Applications. Anal Chem 85(1):114–120. doi:10.1021/ac3022136

    Article  Google Scholar 

  80. Zampolli S, Elmi I, Mancarella F, Betti P, Dalcanale E, Cardinali GC, Severi M (2009) Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph. Sensors Actuators B Chem 141(1):322–328. doi:10.1016/j.snb.2009.06.021

    Article  CAS  Google Scholar 

  81. Sklorz A, Janßen S, Lang W (2013) Application of a miniaturised packed gas chromatography column and a SnO2 gas detector for analysis of low molecular weight hydrocarbons with focus on ethylene detection. Sensors Actuators B Chem 180:43–49. doi:10.1016/j.snb.2011.12.110

    Article  CAS  Google Scholar 

  82. Mittermuller M, Volmer DA (2012) Micro- and nanostructures and their application in gas chromatography. Analyst 137(14):3195–3201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Azzouz.

Additional information

Published in the special issue Analytical Science in France with guest editors Christian Rolando and Philippe Garrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azzouz, I., Vial, J., Thiébaut, D. et al. Review of stationary phases for microelectromechanical systems in gas chromatography: feasibility and separations. Anal Bioanal Chem 406, 981–994 (2014). https://doi.org/10.1007/s00216-013-7168-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7168-7

Keywords

Navigation