Skip to main content
Log in

Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although glycosyl inositol phosphoryl ceramides (GIPCs) represent the most abundant class of sphingolipids in plants, they still remain poorly characterized in terms of structure and biodiversity. More than 50 years after their discovery, little is known about their subcellular distribution and their exact roles in membrane structure and biological functions. This review is focused on extraction and characterization methods of GIPCs occurring in plants and fungi. Global methods for characterizing ceramide moieties of GIPCs revealed the structures of long-chain bases (LCBs) and fatty acids (FAs): LCBs are dominated by tri-hydroxylated molecules such as monounsaturated and saturated phytosphingosine (t18:1 and t18:0, respectively) in plants and mainly phytosphingosine (t18:0 and t20:0) in fungi; FA are generally 14–26 carbon atoms long in plants and 16–26 carbon atoms long in fungi, these chains being often hydroxylated in position 2. Mass spectrometry plays a pivotal role in the assessment of GIPC diversity and the characterization of their structures. Indeed, it allowed to determine that the core structure of GIPC polar heads in plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an amine, or a N-acetylamine group, whereas the core structure in fungi is Man-IPC. Notably, information gained from tandem mass spectrometry spectra was most useful to describe the huge variety of structures encountered in plants and fungi and reveal GIPCs with yet uncharacterized polar head structures, such as hexose–inositol phosphoceramide in Chondracanthus acicularis and (hexuronic acid)4–inositol phosphoceramide and hexose–(hexuronic acid)3–inositol phosphoceramide in Ulva lactuca.

Example of GIPC with its three building blocks (fatty acid, FA; long chain base, LCB; polar head) where R1 could be a hydroxyl, an amine or a N-acetylamine group

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CID:

Collision-induced dissociation

DHA:

2,6-dihydroxy-acetophenone

ESI:

Electrospray ionization

FA:

Fatty acid

FAME:

Fatty acid methyl ester

Gal:

Galactose

GIPC:

Glycosyl inositol phosphoryl ceramide

GlcA:

Glucuronic acid

GlcN:

Glucosamine

GlcNAc:

N-acetyl glucosamine

Hex:

Hexose

IPC:

Inositol phosphoryl ceramide

IT:

Ion trap

LCB:

Long-chain base

MALDI:

Matrix-assisted laser desorption ionization

Man:

Mannose

MRM:

Multiple reaction monitoring

MS/MS:

Tandem mass spectrometry

NAc:

N-acetyl

Q:

Quadrupole

TIC:

Total ion current

ToF:

Time of flight

References

  1. Pata MO, Hannun YA, Ng CKY (2010) New Phytol 185:611–630

    Article  CAS  Google Scholar 

  2. Cacas JL, Melser S, Domergue F, Joubès J, Bourdenx B, Schmitter JM, Mongrand S (2012) Anal Bioanal Chem 403:2745–2755

    Article  CAS  Google Scholar 

  3. Sperling P, Franke S, Luthje S, Heinz E (2005) Plant Physiol Biochem 43:1031–1038

    Article  CAS  Google Scholar 

  4. Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB (2013) Curr Opin Plant Biol DOI: 10.1016/j.pbi.2013.02.009

  5. Levery SB, Toledo MS, Straus AH, Takahashi HK (2001) Rapid Commun Mass Spectrom 15:2240–2258

    Article  CAS  Google Scholar 

  6. Carter HE, Gigg RH, Law JH, Nakayama T, Weber E (1958) J Biol Chem 233:1309–1314

    CAS  Google Scholar 

  7. Markham JE, Li J, Cahoon EB, Jaworski JG (2006) J Biol Chem 281:22684–22694

    Article  CAS  Google Scholar 

  8. Kaul K, Lester RL (1975) Plant Physiol 55:120–129

    Article  CAS  Google Scholar 

  9. Kaul K, Lester RL (1978) Biochemistry 17:3569–3575

    Article  CAS  Google Scholar 

  10. Markham JE, Jaworski JG (2007) Rapid Commun Mass Spectrom 21:1304–1314

    Article  CAS  Google Scholar 

  11. Carter HE, Koob JL (1969) J Lipid Res 10:363–369

    CAS  Google Scholar 

  12. Buré C, Cacas JL, Wang F, Gaudin K, Domergue F, Mongrand S, Schmitter JM (2011) Rapid Commun Mass Spectrom 25:3131–3145

    Article  Google Scholar 

  13. Toledo MS, Levery SB, Bennion B, Guimaraes LL, Castle SA, Lindsey R, Momany M, Park C, Straus AH, Takahashi HK (2007) J Lipid Res 48:1801–1824

    Article  CAS  Google Scholar 

  14. Simenel C, Coddeville B, Delepierre M, Latgé JP, Fontaine T (2008) Glycobiology 18:84–96

    Article  CAS  Google Scholar 

  15. Heise N, Gutierrez ALS, Mattos KA, Jones C, Wait R, Previato JO, Mendonça-Previato L (2002) Glycobiology 12:409–420

    Article  CAS  Google Scholar 

  16. Penha CV L y, Todeschini AR, Lopes-Bezerra LM, Wait R, Jones C, Mattos KA, Heise N, Mendonça-Previato L, Previato JO (2001) Eur J Biochem 268:4243–4250

    Article  Google Scholar 

  17. Gutierrez ALS, Farage L, Melo MN, Mohana-Borges RS, Guerardel Y, Coddeville B, Wieruszeski JM, Mendonça-Previato L, Previato JO (2007) Glycobiology 17:1C–11C

    Article  CAS  Google Scholar 

  18. Jennemann R, Bauer BL, Bertalanffy H, Geyer R, Gschwind RM, Selmer T (1999) Wiegandt H 259:331–338

    CAS  Google Scholar 

  19. Jennemann R, Geyer R, Sandhoff R, Gschwind RM, Levery SB, Grone HJ, Wiegandt H (2001) Eur J Biochem 268:1190–1205

    Article  CAS  Google Scholar 

  20. Toledo MS, Levery SB, Straus AH, Takahashi HK (2001) FEBS Lett 493:50–56

    Article  CAS  Google Scholar 

  21. Wells GB, Dickson RC, Lester RL (1996) J Bact 178:6223–6226

    CAS  Google Scholar 

  22. Salas JJ, Markham JE, Martinez-Force E, Garces R (2011) J Agric Food Chem 59:12486–12492

    Article  CAS  Google Scholar 

  23. Uchiyama R, Aoki K, Sugimoto H, Taka N, Katayama T, Itonori S, Sugita M, Che FS, Kumagai H, Yamamoto K (2009) Biosci Biotechnol Biochem 73:74–78

    Article  CAS  Google Scholar 

  24. Aoki K, Uchiyama R, Itonori S, Sugita M, Che FS, Isogai A, Hada N, Hada J, Takeda T, Kumagai H, Yamamoto K (2004) Biochem J 378:461–472

    Article  CAS  Google Scholar 

  25. Levery SB, Toledo MS, Straus AH, Takahashi HK (1998) Biochemistry 37:8764–8775

    Article  CAS  Google Scholar 

  26. Hsieh TC, Lester RL, Laine RA (1981) J Biol Chem 256:7747–7755

    CAS  Google Scholar 

  27. Trinel PA, Maes E, Zanetta JP, Delplace F, Coddeville B, Jouault T, Strecker G, Poulain D (2002) J Biol Chem 277:37260–37271

    Article  CAS  Google Scholar 

  28. Costello CE, Vath JE (1990) Meth Enzymol 193:738–768

    Article  CAS  Google Scholar 

  29. Blaas N, Humpf HU (2013) J Agric Food Chem DOI: 10.1021/jf4001499

  30. Barr K, Lester RL (1984) Biochemistry 23:5581–5588

    Article  CAS  Google Scholar 

  31. Carter HE, Kisic A (1969) J Lipid Res 10:356–362

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the French Agence Nationale pour la Recherche (contract no. NT09_517917 PANACEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Buré.

Additional information

Published in the special issue Analytical Science in France with guest editors Christian Rolando and Philippe Garrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buré, C., Cacas, JL., Mongrand, S. et al. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Anal Bioanal Chem 406, 995–1010 (2014). https://doi.org/10.1007/s00216-013-7130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7130-8

Keywords

Navigation