Skip to main content
Log in

Rapid nanoscale quantitative analysis of plant sphingolipid long-chain bases by GC-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In eukaryotic organisms, sphingolipids are major structural lipids of biological membranes and perform additional essential functions as signalling molecules. While long-chain bases (LCB), the common precursor to all sphingolipid classes, is represented by only one major molecular species in animals and fungi, up to nine LCB have been found in plants. In the absence of genuine plant sphingolipid references required for proper quantification, we have reinvestigated and optimized a protocol destined to the quantification of total plant LCB that relies on the use of gas chromatography-mass spectrometry (GC-MS). This rapid three-step protocol sequentially involves (1) the release of LCB from biological samples using barium hydroxide solution, (2) their oxidation into aldehydes by metaperiodate, and (3) the subsequent identification/quantification of these aldehydes by GC-MS. It is simple and reliable and enables separation of aldehydes upon their stero-specificity. It further enables the quantification of total LCB from a wide variety of samples including yeast and animal cell cultures.

Rationale for rapid LCB analysis by GC-MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  Google Scholar 

  2. Mongrand S, Stanislas T, Bayer EM, Lherminier J, Simon-Plas F (2010) Membrane rafts in plants cells. Trends Plant Sci 15:656–663

    Article  CAS  Google Scholar 

  3. Melser S, Batailler B, Peypelut M, Poujol C, Bellec Y, Wattelet-Boyer V, Maneta-Peyret L, Faure JD, Moreau P (2010) Glucosylceramide Biosynthesis is involved in golgi morphology and protein secretion in plant cells. Traffic 11:479–490

    Article  CAS  Google Scholar 

  4. Shechtman CF, Henneberry AL, Seimon TA, Tinkelenberg AH, Wilcox LJ, Lee E, Fazlollahi M, Munkacsi AB, Bussemaker HJ, Tabas I, Sturley SL (2011) Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response. J Biol Chem 286:11951–11959

    Article  CAS  Google Scholar 

  5. Breslow DK, Weissman JS (2010) Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 40:267–279

    Article  CAS  Google Scholar 

  6. Bedia C, Levade T, Codogno P (2011) Regulation of autophagy by sphingolipids. Anticancer Agents Med Chem 11:844-853 PMID:21707487.

    Google Scholar 

  7. Yamagata M, Obara K, Kihara A (2011) Sphingolipid synthesis is involved in autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 410:786–791

    Article  CAS  Google Scholar 

  8. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–3179

    Article  CAS  Google Scholar 

  9. Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J 58:260–274

    Article  CAS  Google Scholar 

  10. Kihara A, Mitsutake S, Mizutani Y, Igarashi Y (2007) Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 46:126–144

    Article  CAS  Google Scholar 

  11. Sperling P, Heinz E (2003) Plants sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632:1–15

    Article  CAS  Google Scholar 

  12. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramides. Science 259:1769–1771

    Article  CAS  Google Scholar 

  13. Pata MO, Hannun YA, Ng CKY (2010) Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol 185:611–630

    Article  CAS  Google Scholar 

  14. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  CAS  Google Scholar 

  15. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA 106:2136–2141

    Article  CAS  Google Scholar 

  16. Sullards MC, Liu Y, Chen Y, Merrill AH Jr (2011) Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta. doi:10.1016/j.bbalip.2011.06.027

  17. Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684–22694

    Article  CAS  Google Scholar 

  18. Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  CAS  Google Scholar 

  19. Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    Article  CAS  Google Scholar 

  20. Sweeley CC, Moscatelli EA (1959) Qualitative microanalysis and estimation of sphingolipid bases. J Lipid Res 1:40–47

    CAS  Google Scholar 

  21. Bonaventure G, Salas J, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  CAS  Google Scholar 

  22. Corey EJ, Suggs W (1975) Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett 16:2647–2650

    Article  Google Scholar 

  23. Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for the oxidative burst in elicited tobacco cells. Plant J 31:137–147

    Article  CAS  Google Scholar 

  24. Bayer E, Thomas CL, Maule AJ (2004) Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 223:93–102

    Article  CAS  Google Scholar 

  25. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993

    Article  CAS  Google Scholar 

  26. Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoules JJ (2004) Lipid rafts in higher plants. Purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  CAS  Google Scholar 

  27. Buré C, Cacas JL, Wang F, Gaudin K, Domergue F, Mongrand S, Schmitter JM (2011) Fast screening of highly glycosylated plant sphingolipid by tandem mass spectrometry. Rapid Commun Mass Spectrom 25:3131–3145

    Article  Google Scholar 

  28. Carter HE, Koob JL (1959) Sphingolipids in bean leaves (Phaseolus vulgaris). J Lipid Res 10:363–369

    Google Scholar 

  29. Kojima M, Ohnishi M, Ito S (1991) Composition and molecular species of ceramide and cerabroside in scarlet runner beans (Phaseolus coccineus L.) and kidney beans (Phaseolus vulgaris L.). J Agric Food Chem 39:1709–1714

    Article  CAS  Google Scholar 

  30. Yoon HT, Yoo HS, Shin BK, Lee WJ, Kim HM, Hong SP, Moon DC, Lee YM (1999) Improved fluorescent determination method of cellular sphingoid bases in high-performance liquid chromatography. Arch Pharm Res 22:294–299

    Article  CAS  Google Scholar 

  31. Berdyshev EV (2011) Mass spectrometry of fatty aldehydes. Biochim Biophys Acta. doi:10.1016/j.bbalip.2011.08.018

  32. Gaudin K, Chaminade P, Baillet A, Ferrier D, Bleton J, Goursaud S, Tchapla A (1999) Contribution to liquid chromatographic analysis of cutaneous ceramides. J Liq Chrom Rel Technol 22:379–340

    Article  CAS  Google Scholar 

  33. Garcia-Maroto F, Garrido-Cardenas JA, Michaelson LV, Napier JA, Alonso DL (2007) Cloning and molecular characterisation of a Δ8-sphingolipid-desaturase from Nicotiana tabacum closely related to Δ6-acyl-desaturases. Plant Mol Biol 64:241–250

    Article  CAS  Google Scholar 

  34. Sperling P, Franke S, Lüthje S, Heinz E (2005) Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem 43:1031–1038

    Article  CAS  Google Scholar 

  35. Brace JL, Lester RL, Dickson RC, Rudin CM (2007) SVF1 regulates cell survival by affecting sphingolipid metabolism in Saccharomyces cerevisiae. Genetics 175:65–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to warmly thank Dr. Christelle Guillier (INRA, Dijon, France) for providing alfalfa DIM samples. We are grateful to Dr. Charles Rudin and Dr. Jenni Brace (University of Chicago, Chicago, IL, USA) for sharing results about the LCB composition of yeast sur2Δ mutants. We also wish to warmly thank Dr. Eric Brenner (Université de Strasbourg, Strasbourg, France) and Karen Gaudin (Université Bordeaux 2, Bordeaux, France) for enthusiastic and stimulating discussions. We thank Dr. François-Xavier Felpin (Université Bordeaux 1, Bordeaux, France) for helping with the synthesis of long-chain fatty aldehydes. We are grateful to Dr. Patrick Moreau, Dr. René Lessire, and Dr. Jean-Jacques Besoule (CNRS, Bordeaux, France) for critical reading and stimulating discussions. We acknowledge the platforms Métabolome-Lipidome-Fluxome of Bordeaux (https://www.bordeaux.inra.fr/umr619/RMN_index.htm) for contribution to mass spectrometry equipment. This work has been funded by the French National Agency for Research, ANR program (NT09_517917, ANR PANACEA to SM and JMS). We declare no conflict of interest with any work cited in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Cacas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacas, JL., Melser, S., Domergue, F. et al. Rapid nanoscale quantitative analysis of plant sphingolipid long-chain bases by GC-MS. Anal Bioanal Chem 403, 2745–2755 (2012). https://doi.org/10.1007/s00216-012-6060-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6060-1

Keywords

Navigation