Skip to main content
Log in

Generation of ion-bound solvent clusters as reactant ions in dopant-assisted APPI and APLI

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We provide experimental and theoretical evidence that the primary ionization process in the dopant-assisted varieties of the atmospheric pressure ionization methods atmospheric pressure photoionization and atmospheric pressure laser ionization in typical liquid chromatography–mass spectrometry settings is—as suggested in the literature—dopant radical cation formation. However, instead of direct dopant radical cation–analyte interaction—the broadly accepted subsequent step in the reaction cascade leading to protonated analyte molecules—rapid thermal equilibration with ion source background water or liquid chromatography solvents through dopant ion–molecule cluster formation occurs. Fast intracluster chemistry then leads to almost instantaneous proton-bound water/solvent cluster generation. These clusters interact either directly with analytes by ligand switching or association reactions, respectively, or further downstream in the intermediate-pressure regions in the ion transfer stages of the mass spectrometer via electrical-field-driven collisional decomposition reactions finally leading to the predominantly observed bare protonated analyte molecules [M + H]+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Purcell et al. [1] dissolved bitumen samples in perdeuterated toluene and subjected the mixture directly to high-resolution APPI Fourier transform ion cyclotron resonance analysis. Deuterated toluene donated a deuteron to only 10–15 % of the even-electron ions formed from pyridinic nitrogen model compounds.

  2. E r = E/N, where E is the electrical field strength (V/cm) and N is molecular number density (molecule per cubic centimeter), resulting in the unit volt square centimeter per molecule. More conveniently, 1 Td (townsend) = 10-17 V cm2/molecule.

  3. There is also a very good and comprehensive tutorial on buffer gas cooling of ion beams by Moore [20]. There one actually learns why ground loops in combination with high-voltage surges may result in a good number of bottles of beer being wasted.

References

  1. Purcell JM, Hendrickson CL, Rodgers RP, Marshalla AG (2007) Atmospheric pressure photoionization proton transfer for complex organic mixtures investigated by Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 18:1682–1689

    Article  CAS  Google Scholar 

  2. Kebarle P, Searles SK, Zolla A, Scarborough J, Arshadi M (1967) The solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of individual reactions: H+(H2O)n-1 + H2O →H+(H2O)n. J Am Chem Soc 89(23):6393–6399

    Article  CAS  Google Scholar 

  3. Kebarle P, Haynes RN, Collins JG (1967) Competitive solvation of the hydrogen ion by water and methanol molecules studied in the gas phase. J Am Chem Soc 89(23):5753–5757

    Article  CAS  Google Scholar 

  4. Good A, Durden DA, Kebarle P (1979) Ion-molecule reactions in pure nitrogen and nitrogen containing traces of water at total pressures 0.5-4 torr. Kinetics of clustering reactions forming H+(H2O)n. J Chem Phys 52(1):212–221

    Article  Google Scholar 

  5. Bohme DK, Mackay GI, Tanner SD (1978) An experimental study of the gas-phase kinetics of reactions with hydrated H3O+ ions (n = 1-3) at 298 K. J Am Chem Soc 101(14):3724–3730

    Article  Google Scholar 

  6. Lau YK, Ikuta S, Kebarle P (1982) Thermodynamics and kinetics of the gas-phase reactions: H3O+(H2O)n-1 + H2O = H3O+(H2O)n. J Am Chem Soc 104:1462–1469

    Article  CAS  Google Scholar 

  7. Zook DR, Grimsrud EP (1988) Measurement of ion clustering equilibria of proton hydrates by atmospheric pressure ionization mass spectrometry. J Phys Chem 92:6374–6379

    Article  CAS  Google Scholar 

  8. Sunner J, Nicol G, Kebarle P (1988) Factors determining relative sensitivity of analytes in positive mode atmospheric pressure ionization mass spectrometry. Anal Chem 60:1300–1307

    Article  CAS  Google Scholar 

  9. Kambara H, Kanomata I (1976) Collisional dissociation in atmospheric pressure ionization mass spectrometry. Mass Spectrosc (Japan) 24(4):271–282

    Article  CAS  Google Scholar 

  10. Kambara H, Kanomata I (1977) Collision-induced dissociation of water cluster ions at high pressure. Int J Mass Spectrom Ion Phys 25:129–136

    Article  CAS  Google Scholar 

  11. Albrecht S, Klopotowski S, Derpmann V, Klee S, Brockmann K J, Stroh F, Benter T (2013) Studies of the mechanics of the cluster formation in a thermally sampling API MS. Submitted to Rev Sci Instrum

  12. Barnes I, Kersten H, Wissdorf W, Pöhler T, Hönen H, Klee S, Brockmann KJ, Benter T (2010) Novel laminar flow ion sources for LC- and GC-API MS. In: Proceedings of the 58th ASMS conference on mass spectrometry and allied topics, Salt Lake City, Utah, USA

  13. Klopotowski S, Brachthäuser Y, Müller D, Kersten H, Wissdorf W, Brockmann KJ, Benther T (2012) Characterization of API-MS inlet capillary flow: examination of transfer times and choked flow conditions. In: Proceedings of 60th ASMS conference on mass spectrometry and allied topics, Vancouver, British Colombia, Canada

  14. Klopotowski S, Brachthäuser Y, Müller D, Kersten H, Wissdorf W, Derpmann V, Klee S, Brockmann KJ, Janoske U, Gregor H, Benter T (2011) API-MS transfer capillary flow: examination of the downstream gas expansion. In: Proceedings of the 59th ASMS conference on mass spectrometry and allied topics, Denver, Colorado, USA

  15. Jelezniak M, Jelezniak I (2009) CHEMKED 3.3. http://www.chemked.com. Accessed 23 Feb 2013

  16. Wissdorf W, Seifert L, Derpmann V, Klee S, Vautz W, Benter T (2013) Monte Carlo simulation of ion trajectories of reacting chemical systems: mobility of small water clusters in ion mobility spectrometry. J Am Soc Mass Spectrom. doi:10.1007/s13361-012-0553-1

    Google Scholar 

  17. Wissdorf W, Pohler L, Klee S, Müller D, Benter T (2012) Simulation of ion motion at atmospheric pressure: particle tracing versus electrokinetic flow. J Am Soc Mass Spectrom 23:397–406

    Article  CAS  Google Scholar 

  18. Wissdorf W, Lorenz M, Pöhler T, Höhnen H, Benter T (2013) Atmospheric pressure ion source development: experimental validation of simulated ion trajectories within complex flow and electrical fields. J Am Soc Mass Spectrom

  19. Lorenz M, Klee S, Mönnikes R, Mangas Suárez AL, Brockmann, KJ, Schmitz OJ, Gäb S, Benter T (2008) Atmospheric pressure laser ionization (APLI): investigations on ion transport in atmospheric pressure ion sources. In: Proceedings of 56th ASMS conference on mass spectrometry and allied topics, Denver, Colorado, USA

  20. Moore RB (2002) Buffer gas cooling of ion beams. http://www.physics.mcgill.ca/~moore/Notes/BeamCooling.pdf. Accessed Dec 2012

  21. Douglas DJ, French JB (1992) Collisional focusing effects in radio frequency quadrupoles. J Am Soc Mass Spectrom 3:398

    Article  CAS  Google Scholar 

  22. Searcy JQ, Fenn JB (1974) Clustering of water on hydrated protons in a supersonic free jet expansion. J Chem Phys 61(12):5282–5288

    Article  CAS  Google Scholar 

  23. Imasaka T, Moore DS, Vo-Dinh T (2003) Critical assessment: use of supersonic jet spectrometry for complex mixture analysis. Pure Appl Chem 75(7):975–998

    Article  CAS  Google Scholar 

  24. Searcy JQ (1975) A kinetic model for clustering of water on hydrated protons on a supersonic free jet expansion. J Chem Phys 63(10):4114–4119

    Article  CAS  Google Scholar 

  25. Yang X, Castleman AW Jr (1989) Large protonated water clusters H+(H2O)n (1 ≤ n > 60): the production and reactivity of clathrate-like structures under thermal conditions. J Am Chem Soc 111:6845–6846

    Article  CAS  Google Scholar 

  26. Kauppila TJ, Kostiainen R, Bruins AP (2004) Anisole, a new dopant for atmospheric pressure photoionization mass spectrometry of low proton affinity, low ionization energy compounds. Rapid Commun Mass Spectrom 18:808–815

    Article  CAS  Google Scholar 

  27. Syage JA (2004) Mechanism of [M + H]+ formation in photoionization mass spectrometry. J Am Soc Mass Spectrom 15:1521–1533

    Article  CAS  Google Scholar 

  28. Kappila T, Kostiainen R, Bruins AP (2005) Effect of the solvent flow rate on the ionization efficiency in atmospheric pressure photoionization-mass spectrometry. J Am Soc Mass Spectrom 16:1399–1407

    Article  Google Scholar 

  29. Rob DB, Blades MW (2005) Effects of solvent flow, dopant flow, and lamp current on dopant-assisted atmospheric pressure photoionization (DA-APPI) for LC-MS. Ionization via proton transfer. J Am Soc Mass Spectrom 16:1275–1290

    Article  Google Scholar 

  30. Bernstein ER, Li S (1992) Toluene-water clusters: ion fragmentation and chemistry. J Chem Phys 97:2–15

    Google Scholar 

  31. Miyazaki M, Fujii A, Abata T, Mikami N (2003) Infrared spectroscopy of hydrated benzene cluster cations, [C6H6-(H2O)n]+ (n = 1–6): structural changes upon photoionization and proton transfer reactions. Phys Chem Chem Phys 5:1137–1148

    Article  CAS  Google Scholar 

  32. Kleinermanns K, Janzen C, Spangenberg D, Gerhards M (1999) Infrared spectroscopy of resonantly ionized (Phenol)(H2O)n +. J Phys Chem A 103:5232–5239

    Article  CAS  Google Scholar 

  33. Cunningham AJ, Payzant JD, Kebarle P (1972) A kinetic study of the proton hydrate H+(H2O)n equilibria in the gas phase. J Am Chem Soc 94(22):7627–7632

    Article  CAS  Google Scholar 

  34. Viggiano AA, Dale F, Paulson JF (1987) Proton transfer reactions of H+(H2O)n = 2-11 with methanol, ammonia, pyridine, acetonitrile, and acetone. J Chem Phys 88(4):2469–2477

    Article  Google Scholar 

  35. Midey AJ, Williams S, Arnold ST, Viggiano AA (2002) Reactions of H3O+(H2O)0,1 with alkylbenzenes from 298 to 1200 K. J Phys Chem A 106:11726–11738

    Article  CAS  Google Scholar 

  36. Adams NG, Bohme DK, Dunkin DB, Fehsenfeld FC, Ferguson EE (1970) Flowing afterglow studies of formation and reactions of cluster ions of O2 +, O2 , and O. J Chem Phys 52:3133–3140

    Article  CAS  Google Scholar 

  37. Liang CW, Leea YT, Chena CH, Wang YS (2009) Ionizing nonvolatile samples using laser desorption–proton-transfer reaction with cluster reagent ions. Int J Mass Spectrom 291:61–66

    Google Scholar 

  38. Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896

    Article  CAS  Google Scholar 

  39. Shahin MM (1965) Mass spectrometric studies of corona discharges in air at atmospheric pressures. J Chem Phys 45:2600–2605

    Article  Google Scholar 

Download references

Acknowledgments

The instrument briefly described in this work was partly developed at the University of Wuppertal, Germany, to be finally installed at IEK-7 of Research Center Jülich, Germany. S.K., V.D., H.K., and T.B. are indebted to the director of the IEK-7, Martin Riese, and to Fred Stroh of IEK-7 for strongly supporting this work by a 1-year loan of the instrument to the University of Wuppertal. S.K. acknowledges a graduate student research fellowship from Bruker Daltonics, Bremen, Germany. S.A. acknowledges a graduate student research fellowship from Research Center Jülich. Part of this work was funded through grant Be 2124/6-1 of the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Benter.

Additional information

Published in the topical collection Photo Ionisation in Mass Spectrometry with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klee, S., Albrecht, S., Derpmann, V. et al. Generation of ion-bound solvent clusters as reactant ions in dopant-assisted APPI and APLI. Anal Bioanal Chem 405, 6933–6951 (2013). https://doi.org/10.1007/s00216-013-7114-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7114-8

Keywords

Navigation