Skip to main content
Log in

Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The arsenal of fluorescent probes tailored to functional imaging of cells is rapidly growing and benefits from recent developments in imaging strategies. Here, we present a new molecular rotor, which displays strong absorption in the green region of the spectrum, very little solvatochromism, and strong emission sensitivity to local viscosity. The emission increase is paralleled by an increase in emission lifetime. Owing to its concentration-independent nature, fluorescence lifetime is particularly suitable to image environmental properties, such as viscosity, at the intracellular level. Accordingly, we demonstrate that intracellular viscosity measurements can be efficiently carried out by lifetime imaging with our probe and phasor analysis, an efficient method for measuring lifetime-related properties (e.g., bionalyte concentration or local physicochemical features) in living cells. Notably, we show that it is possible to monitor the partition of our probe into different intracellular regions/organelles and to follow mitochondrial de-energization upon oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that HP mixtures contained always at least 80 % glycerol.

References

  1. Wessels JT, Yamauchi K, Hoffman RM, Wouters FS (2010) Cytometry A 77:667–676

    Google Scholar 

  2. Goncalves MS (2009) Chem Rev 109:190–212

    Article  CAS  Google Scholar 

  3. Sinkeldam RW, Greco NJ, Tor Y (2010) Chem Rev 110:2579–2619

    Article  CAS  Google Scholar 

  4. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) Chem Rev 110:2620–2640

    Article  CAS  Google Scholar 

  5. Demchenko AP (2010) J Fluoresc 20:1099–1128

    Article  Google Scholar 

  6. Serresi M, Bizzarri R, Cardarelli F, Beltram F (2009) Anal Bioanal Chem 393:1123–1133

    Article  CAS  Google Scholar 

  7. McAnaney TB, Park ES, Hanson GT, Remington SJ, Boxer SG (2002) Biochemistry 41:15489–15494

    Article  CAS  Google Scholar 

  8. Ibraheem A, Campbell RE (2010) Curr Opin Chem Biol 14:30–36

    Article  CAS  Google Scholar 

  9. Suhling K, French PM, Phillips D (2005) Photochem Photobiol Sci 4:13–22

    Article  CAS  Google Scholar 

  10. Berezin MY, Achilefu S (2010) Chem Rev 110:2641–2684

    Article  CAS  Google Scholar 

  11. Jameson DM, Gratton E, Hall RD (1984) Appl Spectrosc Rev 20:55–106

    Article  CAS  Google Scholar 

  12. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) Biophys J 94:L14–L16

    Article  CAS  Google Scholar 

  13. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E (2011) Proc Natl Acad Sci U S A 108:13582–13587

    Article  CAS  Google Scholar 

  14. Clayton AH, Hanley QS, Verveer PJ (2004) J Microsc 213:1–5

    Article  CAS  Google Scholar 

  15. Stefl M, James NG, Ross JA, Jameson DM (2011) Anal Biochem 410:62–69

    Article  CAS  Google Scholar 

  16. Battisti A, Digman MA, Gratton E, Storti B, Beltram F, Bizzarri R (2012) Chem Commun (Camb) 48:5127–5129

    Article  CAS  Google Scholar 

  17. Signore G, Nifosi R, Albertazzi L, Storti B, Bizzarri R (2010) J Am Chem Soc 132:1276–1288

    Article  CAS  Google Scholar 

  18. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Chem Rev 103:3899–4032

    Article  Google Scholar 

  19. Haidekker MA, Theodorakis EA (2010) J Biol Eng 4:11

    Article  Google Scholar 

  20. Kuimova MK (2012) Phys Chem Chem Phys 14:12671–12686

    Article  CAS  Google Scholar 

  21. Sutharsan J, Lichlyter D, Wright NE, Dakanali M, Haidekker MA, Theodorakis EA (2010) Tetrahedron 66:2582–2588

    Article  CAS  Google Scholar 

  22. Mewes HW, Rafael J (1981) FEBS Lett 131:7–10

    Article  CAS  Google Scholar 

  23. Ramadass R, Bereiter-Hahn J (2008) Biophys J 95:4068–4076

    Article  CAS  Google Scholar 

  24. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Bioorg Chem 33:415–425

    Article  CAS  Google Scholar 

  25. Ramadass R, Bereiter-Hahn J (2007) J Phys Chem B 111:7681–7690

    Article  CAS  Google Scholar 

  26. Bizzarri R, Serresi M, Luin S, Beltram F (2009) Anal Bioanal Chem 393:1107–1122

    Article  CAS  Google Scholar 

  27. Zhou FK, Shao JY, Yang YB, Zhao JZ, Guo HM, Li XL, Ji SM, Zhang ZY (2011) Eur J Org Chem 25:4773–4787

    Google Scholar 

  28. Bolte S, Cordelieres FP (2006) J Microsc 224:213–232

    Article  CAS  Google Scholar 

  29. Di Rienzo C, Jacchetti E, Cardarelli F, Bizzarri R, Beltram F, Cecchini M (2013) Sci Rep 3:1141

    Article  Google Scholar 

  30. Kuimova MK, Yahioglu G, Levitt JA, Suhling K (2008) J Am Chem Soc 130:6672–6673

    Article  CAS  Google Scholar 

  31. Peng X, Yang Z, Wang J, Fan J, He Y, Song F, Wang B, Sun S, Qu J, Qi J, Yan M (2011) J Am Chem Soc 133:6626–6635

    Article  CAS  Google Scholar 

  32. van Meer G, Voelker DR, Feigenson GW (2008) Nat Rev Mol Cell Biol 9:112–124

    Article  Google Scholar 

  33. Oncul S, Klymchenko AS, Kucherak OA, Demchenko AP, Martin S, Dontenwill M, Arntz Y, Didier P, Duportail G, Mely Y (2010) Biochim Biophys Acta 1798:1436–1443

    Article  CAS  Google Scholar 

  34. Kim J, Lee M (1999) J Phys Chem A 103:3378–3382

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marco Cecchini and Prof. Enrico Gratton for useful discussions. This work was partially supported by the Italian Ministry for University and Research (MiUR) under the framework of the FIRB project RBPR05JH2P and PRIN project 2010BJ23MN_004 and by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP4-LA-2009-229289 NanoII and grant agreement no. NMP3-SL-2009-229294 NanoCARD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanni Signore or Ranieri Bizzarri.

Additional information

Published in the topical collection Optical Nanosensing in Cells with guest editor Francesco Baldini.

Antonella Battisti and Silvio Panettieri contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battisti, A., Panettieri, S., Abbandonato, G. et al. Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime. Anal Bioanal Chem 405, 6223–6233 (2013). https://doi.org/10.1007/s00216-013-7084-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7084-x

Keywords

Navigation