Skip to main content
Log in

Desorption electrospray ionization mass spectrometry (DESI-MS) applied to the speciation of arsenic compounds from fern leaves

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The different chemical forms of arsenic compounds, including inorganic and organic species, present distinct environmental impacts and toxicities. Desorption electrospray ionization mass spectrometry (DESI-MS) is an excellent technique for in situ analysis, as it operates under atmospheric pressure and room temperature and is conducted with no/minimal sample pretreatment. Aimed at expanding its scope, DESI-MS is applied herein for the quick and reliable detection of inorganic (arsenate—As(V): AsO4 3− and arsenite—As(III): AsO2 ) and organic (dimethylarsinic acid—DMA: (CH3)2AsO(OH) and disodium methyl arsonate hexahydrate: CH3AsO3·2Na·6H2O) arsenic compounds in fern leaves. Operational conditions of DESI-MS were optimized with DMA standard deposited on paper surfaces to improve ionization efficiency and detection limits. Mass spectra data for all arsenic species were acquired in both the positive and negative ion modes. The positive ion mode was shown to be useful in detecting both the organic and inorganic arsenic compounds. The negative ion mode was shown only to be useful in detecting As(V) species. Moreover, MS/MS spectra were recorded to confirm the identity of each arsenic compound by the characteristic fragmentation profiles. Optimized conditions of DESI-MS were applied to the analysis of fern leaves. LC-ICP-MS was employed to confirm the results obtained by DESI-MS and to quantify the arsenic species in fern leaves. The results confirmed the applicability of DESI-MS in detecting arsenic compounds in complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ATSDR Agency for toxic substances and disease registry (2011) Priority List of Hazardous Substances. http://www.atsdr.cdc.gov/SPL/. Accessed 22 April 2012

  2. WHO World Health Organization (2001) Environmental health criteria 224: arsenic and arsenic compounds. Geneva. http://www.inchem.org/documents/ehc/ehc/ehc224.htm. Accessed 22 april 2012.

  3. Vasconcelos O, Palmieri H, Matschullat J, Deschamps E (2007) In: Deschamps E, Matschullat J. Arsênio antropogênico e natural: um estudo em regiões do Quadrilátero Ferrífero. Belo Horizonte: Fundação estadual do meio ambiente.

  4. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  5. Barra CM, Santelli RE, Abrão JJ, Monizat M (2000) Especiação de arsênio—uma revisão. Quim Nova 23:58–70

    Article  CAS  Google Scholar 

  6. Mir KA, Rutter A, Koch I, Smith P, Reimer KJ, Poland JS (2007) Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta 72:1507–1518

    Article  CAS  Google Scholar 

  7. Nam SH, Oh HJ, Min HS, Lee JH (2010) A study on the extraction and quantification of total arsenic and arsenic species in seafood by HPLC-ICP-MS. Microchem J 95:20–24

    Article  CAS  Google Scholar 

  8. Anawar HM (2012) Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry. Talanta 88:30–42

    Article  CAS  Google Scholar 

  9. Garcia-Sartal C, Taebunpakul S, Stokes E, Barciela-Alonso MC, Bermejo-Barrera P, Goenaga-Infante H (2012) Two-dimensional HPLC coupled to ICP-MS and electrospray ionization (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed. Anal Bioanal Chem 402:3359–3369

    Article  CAS  Google Scholar 

  10. Llorente-Mirandes T, Ruiz-Chancho MJ, Barbero M, Rubio R, Lopez-Sanchez JF (2011) Determination of water-soluble arsenic compounds in commercial edible seaweed by LC-ICP-MS. J Agric Food Chem 59:12963–12968

    Article  CAS  Google Scholar 

  11. Chen HW, Hu B, Zhang X (2010) Principle and application of ambient mass spectrometry for direct analysis of complex samples. Chin J Anal Chem 38:1069–1088

    Article  CAS  Google Scholar 

  12. Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  Google Scholar 

  13. Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ (2012) Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84:141–148

    Article  CAS  Google Scholar 

  14. Gerbig S, Golf O, Balog J, Denes J, Baranyai Z, Zarand A, Raso E, Timar J, Takats Z (2012) Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal Bioanal Chem 403:2315–2325

    Article  CAS  Google Scholar 

  15. Nielen MWF, Hooijerink H, Zomer P, Mol JGJ (2011) Desorption electrospray ionization mass spectrometry in the analysis of chemical food contaminants in food. TrAC Trend Anal Chem 30:165–180

    Article  CAS  Google Scholar 

  16. Thunig J, Flo L, Pedersen-Bjergaard S, Hansen SH, Janfelt C (2012) Liquid-phase microextraction and desorption electrospray ionization mass spectrometry for identification and quantification of basic drugs in human urine. Rapid Commun Mass Spectrom 26:133–140

    Article  CAS  Google Scholar 

  17. Fabrizi G, Fioretti M, Rocca LM, Curini R (2012) DESI-MS2: a rapid and innovative method for trace analysis of six cytostatic drugs in health care setting. Anal Bioanal Chem 403:973–983

    Article  CAS  Google Scholar 

  18. Campbell IS, Ton AT, Mulligan CC (2011) Direct detection of pharmaceuticals and personal care products from aqueous samples with thermally-assisted desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 22:1285–1293

    Article  CAS  Google Scholar 

  19. Morelato M, Beavis A, Ogle A, Doble P, Kirkbride P, Roux C (2012) Screening of gunshot residues using desorption electrospray ionization-mass spectrometry (DESI-MS). Forensic Sci Int 217:101–106

    Article  CAS  Google Scholar 

  20. Kennedy JH, Wiseman JM (2010) Direct analysis of Salvia divinorum leaves for salvinorin A by thin layer chromatography and desorption electrospray ionization multi-stage tandem mass spectrometry. Rapid Commun Mass Spectrom 24:1305–1311

    Article  CAS  Google Scholar 

  21. Li B, Bjarnholt N, Hansen SH, Janfelt C (2011) Characterization of barley leaf tissue using direct and indirect desorption electrospray ionization imaging mass spectrometry. J Mass Spectrom 1241–1246

  22. Müller T, Oradu S, Ifa DF, Cooks RG, Kräutler B (2011) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83:5754–5761

    Article  Google Scholar 

  23. Lin Z, Zhao M, Zhang S, Yang C, Zhang X (2010) In situ speciation on solid surfaces by desorption electrospray ionization tandem mass spectrometry. Analyst 135:1268–1275

    Article  CAS  Google Scholar 

  24. Takáts Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275

    Article  Google Scholar 

  25. Talaty N, Takáts Z, Cooks RG (2005) Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst 130:1624–1633

    Article  CAS  Google Scholar 

  26. Florêncio MH, Duarte MF, Bettencourt AMM, Gomes ML, Vilas Boas LF (1997) Electrospray mass spectra of arsenic compounds. Rapid Commun Mass Spectrom 11:469–473

    Article  Google Scholar 

  27. Moreira CM, Duarte FA, Lebherz J, Pozebon D, Flores EMM, Dressler VL (2011) Arsenic speciation in white wine by LC-ICP-MS. Food Chem 126:1406–1411

    Article  CAS  Google Scholar 

  28. Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

  29. Tu S, Ma LQ, Luongo T (2004) Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil 258:9–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG–CEX–PPM-00433-10) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clésia Cristina Nascentes.

Additional information

Published in the topical collection (Bio)Analytical Research in Latin America with guest editors Marco A. Zezzi Arruda and Lauro Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Abreu, L.B., Augusti, R., Schmidt, L. et al. Desorption electrospray ionization mass spectrometry (DESI-MS) applied to the speciation of arsenic compounds from fern leaves. Anal Bioanal Chem 405, 7643–7651 (2013). https://doi.org/10.1007/s00216-013-6986-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6986-y

Keywords

Navigation