Skip to main content
Log in

Parts per trillion level determination of endocrine-disrupting chlorinated compounds in river water and wastewater effluent by stir-bar-sorptive extraction followed by gas chromatography–triple quadrupole mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new analytical method using stir-bar-sorptive extraction (SBSE) followed by liquid desorption (LD) and gas chromatography with triple-quadrupole mass spectrometric detection (GC–QqQ–MS–MS) has been used for quantitative determination of 25 chlorinated endocrine-disrupting compounds (EDCs) in river water and wastewater. The experimental conditions affecting the SBSE–LD performance were studied and are discussed in detail. Results from systematic assay revealed that a 100-mL water sample, stir bars coated with 47 μL PDMS, an extraction time of 14 h (at 900 rpm), 5 % MeOH as modifier and 10 % NaCl resulted in the best analytical recovery of all the target compounds studied. Use of 1:1 ACN–MeOH as back-extraction solvent and two successive sonication steps, each for 5 min, resulted in the best performance for monitoring EDCs in water matrices. The method detection limits for most of the target compounds were very good— ≤ 2 ng L−1 and ≤10 ng L−1 for river water and wastewater effluents respectively. Experimental recovery for all the compounds was >70 %, with the exception of simazine for which recovery from the matrix was 65 %. Signal enhancement observed for a few of the compounds in wastewater effluents was managed by use of matrix-matched standards and different injection liners. The method was successfully used for analysis of river water samples from Henares River (Spain) and wastewater effluent samples from wastewater-treatment plants (WWTP). Eleven of the 25 compounds studied were detected in both river water and wastewater effluents. Terbutylazine and methoxychlor were detected in almost all the river water and effluent samples; amounts varied between 37–58.5 ng L−1 and 15.2–46.8 ng L−1, respectively. This method was shown enable reliable, effective, and sensitive monitoring of chlorinated EDCs at nanogram levels in surface water and wastewater effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chang HS, Choo KH, Lee B, Choi SJ (2009) J Hazard Mat 172:1–12

    Article  CAS  Google Scholar 

  2. Liu Z, Kanjo Y, Mizutani S (2009) Sci Total Environ 407:731–748

    Article  CAS  Google Scholar 

  3. Pitarch E, Medina C, Portoles T, Lopez FJ, Hernandez F (2007) Anal Chim Acta 583:246–258

    Article  CAS  Google Scholar 

  4. Hernando MD, Mezcua M, Gomez MJ, Malato O, Aguera A, Fernandez-Alba AR (2004) J Chromatogr A 1047:129–135

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhou JL (2008) Chemosphere 73:848–853

    Article  CAS  Google Scholar 

  6. Kuch HM, Ballschmiter K (2001) Environ Sci Technol 35:3201–3206

    Article  CAS  Google Scholar 

  7. Gomez MJ, Herrera S, Sole D, Calvo EG, Fernandez-Alba AR (2011) Anal Chem 83:2638–2647

    Article  CAS  Google Scholar 

  8. European Parliament and Council 2000/60/EC establishing a framework for community action in the field of water policy. Off J Eur Union L 327:1–72

    Google Scholar 

  9. Council Directive 2008/105/EC of the European Parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing council directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending directive 2000/60/EC of the European parliament and of the council

  10. Serodio P, Nogueira (2004) Anal Chim Acta 517:21–32

    Article  CAS  Google Scholar 

  11. Leon VM, Alvarez B, Cobollo MA, Munuz S, Valor I (2003) J Chromatogr A 999:91–101

    Article  CAS  Google Scholar 

  12. Santos FJ, Galceran MT (2002) Trends Anal Chem 21:672–685

    Article  CAS  Google Scholar 

  13. Cervera MI, Medina C, Portoles T, Pitarch E, Beltran J, Serrahima E, Pineda L, Munoz G, Centrih F, Hernandez F (2010) Anal Bioanal Chem 397:2873–2891

    Article  CAS  Google Scholar 

  14. Walorczyk S (2007) J Chromatogr A 1165:200–212

    Article  CAS  Google Scholar 

  15. Koesukwiwat U, Lehotay SJ, Leepipatpiboon N (2011) J Chromatogr A 1218:7039–7050

    Article  CAS  Google Scholar 

  16. Gomez MJ, Malato O, Ferrer I, Aguera A, Fernandez-Alba AR (2007) J Environ Monit 9:718–729

    Article  Google Scholar 

  17. Shukla G, Kumar A, Bhanti M, Joseph PE, Taneja A (2006) Environ Int 32:244–247

    Article  CAS  Google Scholar 

  18. Xue N, Xu X, Jin Z (2005) Chemosphere 61:1594–1606

    Article  CAS  Google Scholar 

  19. Gomez MJ, Aguera A, Mezcua M, Hurtado J, Mocholi F, Fernandez-Alba AR (2007) Talanta 73:314–320

    Article  CAS  Google Scholar 

  20. Baltussen B, Sandra P, David F, Cramers C (1999) J Microcol Sep 11:737–747

    Article  CAS  Google Scholar 

  21. David F, Sandra P (2007) J Chromatogr A 1152:54–69

    Article  CAS  Google Scholar 

  22. Prieto A, Basauri O, Rodil R, Usobiaga A, Fernandez LA, Etxebarria N, Zuloaga O (2010) J Chromatogr A 1217:2642–2666

    Article  CAS  Google Scholar 

  23. Lokhnauth JK, Snow NH (2006) J Chromatogr A 1105:33–38

    Article  CAS  Google Scholar 

  24. Almeida C, Nogueira JMF (2006) J Pharm Biomed Anal 41:1303–1311

    Article  CAS  Google Scholar 

  25. Yu C, Hu B (2009) J Sep Sci 32:147–153

    Article  CAS  Google Scholar 

  26. Giordano A, Franzon MF, Ruiz MJ, Font G, Pico Y (2009) Anal Bioanal Chem 393:1733–1743

    Article  CAS  Google Scholar 

  27. Leon VM, Llorca-Porcel J, Alvarez B, Cobollo MA, Munoz S, Valor I (2006) Anal Chem Acta 558:261–266

    Article  CAS  Google Scholar 

  28. Rodil R, Moeder M (2008) J Chromatogr A 1179:81–88

    Article  CAS  Google Scholar 

  29. Prieto A, Zuloaga O, Usobiaga A, Etxebarria N, Fernandez LA (2007) J Chromatogr A 1174:40–49

    Article  CAS  Google Scholar 

  30. Pizzutti IR, Kok AD, Zanella R, Adaime MB, Hiemstra M, Wickert C, Prestes OD (2007) J Chromatogr A 1142:123–136

    Article  CAS  Google Scholar 

  31. Brossa L, Marce RM, Borrull F, Pocurull E (2005) Chromatographia 61:61–65

    Article  CAS  Google Scholar 

  32. Bourdat-Deschamps M, Daudin JJ, Barriuso E (2007) J Chromatogr A 1167:143–153

    Article  CAS  Google Scholar 

  33. Hu Y, Zheng Y, Zhu F, Li G (2007) J Chromatogr A 1148:16–22

    Article  CAS  Google Scholar 

  34. Silva ARM, Nogueira JMF (2008) Talanta 74:1498–1504

    Article  CAS  Google Scholar 

  35. Serodio P, Nogueira JMF (2005) Anal Bioanal Chem 382:1141–1151

    Article  CAS  Google Scholar 

  36. Barriada-Pereira M, Serodio P, Gonzalez-Castro MJ, Nogueira JMF (2010) J Chromatogr A 1217:119–126

    Article  CAS  Google Scholar 

  37. Chaves AR, Silva SM, Queiroz RHC, Lancas FM, Queiroz MEC (2007) J Chromatogr B 850:295–302

    Article  CAS  Google Scholar 

  38. Bouaid A, Ramos L, Gonzalez MJ, Fernandez P, Camara C (2001) J Chromatogr A 939:13–21

    Article  CAS  Google Scholar 

  39. Beltran J, Lopez FJ, Cepria O, Hernandez F (1998) J Chromatogr A 808:257–263

    Article  CAS  Google Scholar 

  40. Sanchez-Avila J, Quintana J, Ventura F, Tauler R, Duarte CM, Lacorte S (2010) Mar Pollut Bull 60:103–112

    Article  CAS  Google Scholar 

  41. Garcia-Falcon MS, Cancho-Grande B, Simal-Gandara J (2004) Water Res 38:1679–1684

    Article  CAS  Google Scholar 

  42. Nguyen KTN, Scapolla C, Carro MD, Magi E (2011) Talanta 85:2375–2384

    Article  CAS  Google Scholar 

  43. Lambert JP, Mullett WM, Wong EK, Lubda D (2005) J Chromatogr A 1075:43–49

    Article  CAS  Google Scholar 

  44. Kole PL, Millership J, McElnay JC (2011) J Pharm Biomed Anal 54:701–710

    Article  CAS  Google Scholar 

  45. Popp P, Bauer C, Wennrich L (2001) Anal Chim Acta 436:1–9

    Article  CAS  Google Scholar 

  46. Sandra P, Tienpont B, David F (2003) J Chromatogr A 1000:299–309

    Article  CAS  Google Scholar 

  47. Cramers C (1999) J Microcol Sep 11:737–747

    Article  Google Scholar 

  48. Silva ARM, Portugal FCM, Nogueira JMF (2008) J Chromatogr A 1209:10–16

    Article  CAS  Google Scholar 

  49. Pfannkoch E, Whitecavage J, Hoffmann A (2002) Stir Bar Sorptive Extraction: capacity and competition effects. GERSTEL Appl Notes 4:1–8

    Google Scholar 

  50. Quintana JB, Rodil R, Muniategui-Lorenzo S, Lopez-Mahia P, Prada-Rodriguez D (2007) J Chromatogr A 1174:27–39

    Article  CAS  Google Scholar 

  51. Sandra P, Tienpont B, Vercammen J, Tredoux A, Sandra T, David F (2001) J Chromatogr A 928:117–126

    Article  CAS  Google Scholar 

  52. Penalver A, Garcıa V, Pocurull E, Borrull F, Marce RM (2003) J Chromatogr A 1007:1–9

    Article  CAS  Google Scholar 

  53. Poole CF (2007) J Chromatogr A 1158:241–250

    Article  CAS  Google Scholar 

  54. Saari E, Peramaki P, Jalonen J (2007) Microchem J 87:113–118

    Article  CAS  Google Scholar 

  55. Gomez MJ, Gomez-Ramos MM, Aguera A, Mezcua M, Herrera S, Fernandez-Alba AR (2009) J Chromatogr A 1216:4071–4082

    Article  CAS  Google Scholar 

  56. Erney DR, Pawlowski TM, Poole CF (1997) J High Resolut Chromatogr 20:375–378

    Article  CAS  Google Scholar 

  57. Przybylski C, Hommet F (2008) J Chromatogr A 1201:78–90

    Article  CAS  Google Scholar 

  58. Kirchner M, Matisova E, Otrekal R, Hercegova A, de Zeeuw J (2005) J Chromatogr A 1084:3–70

    Google Scholar 

  59. Serodio P, Cabral MS, Nogueira JMF (2007) J Chromatogr A 1141:259–270

    Article  CAS  Google Scholar 

  60. Gomez MJ, Herrera S, Sole D, Garcia-Calvo E, Fernandez-Alba AR (2012) Sci Total Environ 420:134–145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. Sridhara Chary would like to thankfully acknowledge the Marie-Curie Actions for providing the AMAROUT fellowship. The authors acknowledge the Spanish Ministry of Science and Innovation (Project CTM2011-27657) and Programa Consolider Ingenio 2010 (CE-CSD 2006-00044) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sridhara Chary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chary, N.S., Herrera, S., Gómez, M.J. et al. Parts per trillion level determination of endocrine-disrupting chlorinated compounds in river water and wastewater effluent by stir-bar-sorptive extraction followed by gas chromatography–triple quadrupole mass spectrometry. Anal Bioanal Chem 404, 1993–2006 (2012). https://doi.org/10.1007/s00216-012-6251-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6251-9

Keywords

Navigation