Skip to main content
Log in

Thermally annealed gold nanoparticles for surface-assisted laser desorption ionisation–mass spectrometry of low molecular weight analytes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metal nanomaterials have an emerging role in surface-assisted laser desorption ionisation–mass spectrometry (SALDI-MS) providing a useful tool to overcome some limitations intrinsically related to the use of conventional organic matrices in matrix-assisted LDI-MS. In this contribution, the possibility to use a stainless-steel-supported gold nanoparticle (AuNP) film as a versatile platform for SALDI-MS was assessed. A sacrificial anode electrosynthetic route was chosen in order to obtain morphologically controlled core–shell AuNPs; the colloidal AuNPs were, thereafter, drop cast onto a stainless-steel sample plate and the resulting AuNP film was thermally annealed in order to improve its effectiveness as LDI-MS promoter. Spectroscopic characterization of the nanostructured film by X-ray photoelectron spectroscopy was crucial for understanding how annealing induced changes in the surface chemistry and influenced the performance of AuNPs as desorption/ionisation promoter. In particular, it was demonstrated that the post-deposition treatments were essential to enhance the AuNP core/analyte interaction, thus resulting in SALDI-MS spectra of significantly improved quality. The AuNP films were applied to the detection of three different classes of low molecular weight (LMW) analytes, i.e. amino acids, peptides and LMW polymers, in order to demonstrate the versatility of this nanostructured material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  2. Ieva E, Cioffi N (2008) In: Pertsov EI (ed) Nanomaterials: new research developments. Nova, New York, pp 269–293, Chapter 6. ISBN 978-1-60456-300-9

    Google Scholar 

  3. Inuta M, Arakawa R, Kawasaki H (2011) Analyst 136:1167–1176

    Article  CAS  Google Scholar 

  4. Riskin M, Tel-Vered R, Bourenko T, Granot E, Willner I (2008) J Am Chem Soc 130:9726–9733

    Article  CAS  Google Scholar 

  5. Dasary SRS, Kumar Singh A, Senapati D, Yu H, Chandra Ray P (2009) J Am Chem Soc 131:13806–13812

    Article  CAS  Google Scholar 

  6. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) J Am Chem Soc 122:9071–9077

    Article  CAS  Google Scholar 

  7. Ray PC (2010) Chem Rev 110:5332–5365

    Article  CAS  Google Scholar 

  8. Law KP, Larkin JR (2011) Anal Bioanal Chem 399:2597–2622

    Article  CAS  Google Scholar 

  9. Rainer M, Qureshi MN, Bonn GK (2011) Anal Bioanal Chem 400:2281–2288

    Article  CAS  Google Scholar 

  10. Arakawa R, Kawasaki H (2010) Anal Sci 26:1229–1240

    Article  CAS  Google Scholar 

  11. Cioffi N, Colaianni L, Pilolli R, Calvano CD, Palmisano F, Zambonin PG (2009) Anal Bioanal Chem 394:1375–1383

    Article  CAS  Google Scholar 

  12. McLean JA, Stumpo KA, Russell DH (2005) J Am Chem Soc 127:5304–5305

    Article  CAS  Google Scholar 

  13. Zhu ZJ, Rotello VM, Vachet RW (2009) Analyst 134:2183–2188

    Article  CAS  Google Scholar 

  14. Chen LC, Hori H, Hiroaka K (2008) In: Ohtsu M (ed) Springer series in optical sciences (vol 139, progress in nano-electro-optics VI: nano-optical probing, manipulation, analysis, and their theoretical bases). Springer, Berlin, pp 67–97

    Google Scholar 

  15. Qiao L, Liu BH, Girault HH (2010) Nanomedicine 5:1641–1652

    Article  CAS  Google Scholar 

  16. Pilolli R, Palmisano F, Cioffi N (2012) Anal Bioanal Chem 402:601–623

    Article  CAS  Google Scholar 

  17. Spencer MT, Furutani H, Oldenburg SJ, Darlington TK, Prather KA (2008) J Phys Chem C 112:4083–4090

    Article  CAS  Google Scholar 

  18. Shibamoto K, Sakata K, Nagoshi K, Korenaga T (2009) J Phys Chem C 113:17774–17779

    Article  CAS  Google Scholar 

  19. Nagoshi K, Sakata K, Shibamoto K, Korenaga T (2009) e-J Surf Sci Nanotechnol 7:93–96

    Article  CAS  Google Scholar 

  20. Huang YF, Chang HT (2006) Anal Chem 78:1485–1493

    Article  CAS  Google Scholar 

  21. Wu HP, Su CL, Chang HC, Tseng WL (2007) Anal Chem 79:6215–6221

    Article  CAS  Google Scholar 

  22. Chiang NC, Chiang CK, Lin ZH, Chiu TC, Chang HT (2009) Rapid Commun Mass Spectrom 23:3063–3068

    Article  CAS  Google Scholar 

  23. Chiang CK, Lin YW, Chen WT, Chang HT (2010) Nanomed Nanotechnol Biol Med 6:530–537

    Article  CAS  Google Scholar 

  24. Shastri L, Kailasa SK, Wu HF (2010) Talanta 81:1176–1182

    Article  CAS  Google Scholar 

  25. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401–7402

    Article  CAS  Google Scholar 

  26. Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R (1995) Science 267:367–369

    Article  CAS  Google Scholar 

  27. Yonezawa T, Kawasaki H, Tarui A, Watanabe T, Arakawa R, Shimada T, Mafuné F (2009) Anal Sci 25:339–346

    Article  CAS  Google Scholar 

  28. Gámez F, Hurtado P, Castillo PM, Caro C, Hortal AR, Zaderenko P, Martínez-Haya B (2010) Plasmonics 5:125–133

    Article  Google Scholar 

  29. Hortal AR, Hurtado P, MartÍnez-Haya B, Arregui A, Bañares L (2008) J Phys Chem B 112:8530–8535

    Article  CAS  Google Scholar 

  30. Montaudo G, Samperi F, Montaudo MS (2006) Prog Polym Sci 31:277–357

    Article  CAS  Google Scholar 

  31. Gamez F, Plaza-Reyes A, Hurtado P, Guillén E, Anta JA, MartÍnez-Haya B, Pérez S, Sanz M, Castillejo M, Izquierdo JG, Bañares L (2010) J Phys Chem C 114:17409–17415

    Article  CAS  Google Scholar 

  32. Regulation n. 1907/2006 of the European Parliament and Council, December 18th 2006

  33. Scofield JH (1976) J Elecron Spectrosc 8:129–137

    Article  CAS  Google Scholar 

  34. Tanuma S, Powell CJ, Penn DR (1993) Surf Interface Anal 21:165–176

    Article  Google Scholar 

  35. Cioffi N, Colaianni L, Ieva E, Pilolli R, Ditaranto N, Angione MD, Cotrone S, Buchholt K, Lloyd Spetz A, Sabbatini L, Torsi L (2011) Electrochim Acta 56:3713–3720

    Article  CAS  Google Scholar 

  36. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Praire

    Google Scholar 

  37. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database, standard reference database 20, version 3.5

  38. Vorobyova SA, Sobal NS, Lesnikovich AI (2001) Colloids Surf A 176:273–277

    Article  CAS  Google Scholar 

  39. Cioffi N, De Palo F, Calvano CD, van der Werf ID, Palmisano F, Zambonin PG (2008) Sens Lett 6:1–8

    Article  Google Scholar 

  40. Zhu ZJ, Ghosh PS, Miranda OR, Vachet RW, Rotello VM (2008) J Am Chem Soc 130:14139–14143

    Article  CAS  Google Scholar 

  41. Ieva E, Buchholt K, Colaianni L, Cioffi N, Sabbatini L, Capitani GC, Lloyd Spetz A, Käll PO, Torsi L (2008) Sens Lett 6:577–584

    Article  CAS  Google Scholar 

  42. Stumpo KA, Russell DH (2009) J Phys Chem C 113:1641–1647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Italian Project ‘Nanomaterials & laser ionisation mass spectrometry: a new bio-analytical approach’ FIRB Futuro in Ricerca 2008, funded by the Ministero dell’Istruzione, dell’Università e della Ricerca. The Laboratory ‘‘Laboratorio di tecnologie di modificazione superficiale di fibre naturali per il rilancio del settore tessile in Puglia-Avviso pubblico Reti di Laboratori Pubblici di Ricerca, Regione Puglia’’ is acknowledged for providing access to the TEM facility. Prof. G. Scamarcio is gratefully thanked for providing access to the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Pilolli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 10.1 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilolli, R., Ditaranto, N., Di Franco, C. et al. Thermally annealed gold nanoparticles for surface-assisted laser desorption ionisation–mass spectrometry of low molecular weight analytes. Anal Bioanal Chem 404, 1703–1711 (2012). https://doi.org/10.1007/s00216-012-6243-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6243-9

Keywords

Navigation