Skip to main content

Gas Phase Formation, Structure and Reactivity of Gold Cluster Ions

  • Chapter
  • First Online:
Gold Clusters, Colloids and Nanoparticles II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 162))

Abstract

With the advent of electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI), mass spectrometry (MS) is now routinely used to establish the molecular formulae of gold nanoclusters (AuNCs). ESI-MS has been used to monitor the solution phase growth of AuNCs when gold salts are reduced in the presence of phosphine or thiolate ligands. Beyond this analytical role, over the past 2 decades MS-based methods have been employed to examine the fundamental properties and reactivities of AuNC ions. For example, ion mobility and spectroscopic measurements may be used to assign structures; thermochemical data provides important information on ligand binding energies; unimolecular chemistry can be explored; and ion–molecule reactions with various substrates can be used to probe catalysis by AuNC ions. MS can also be used to monitor and direct the synthesis of AuNC bulk material either by guiding solution phase synthesis conditions or by soft landing a beam of mass-selected (i.e. monodisperse) AuNC ions onto a surface. This review showcases all areas in which mass spectrometry has played a role in AuNC science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IUPAP does not appear to have a formal definition of a cluster. Johnston [20] suggests the following ‘physics’ definition of clusters: I will take the term cluster to mean an aggregate of a countable number (2–10n, where n can be as high as 6 or 7) of particles (i.e. atoms or molecules). The constituent particles may be identical, leading to homo-atomic (or homo-molecular) clusters, Aa, or they can be two or more different species – leading to hetero-atomic (hetero-molecular) clusters AaBb.

  2. 2.

    The IUPAC inorganic chemistry definition of cluster is as follows: A number of metal centres grouped close together which can have direct metal bonding interactions or interactions through a bridging ligand, but are not necessarily held together by these interactions. See IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML online corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AuNP:

Gold nanoparticle

BINAP:

(±)-2,2′-Bis(diphenylphosphino)-1,1′-binapthylene

BTBC:

Borane tert-butylamine complex

CID:

Collision-induced dissociation

ClAuPPh3 :

Chlorotriphenylphosphinegold(I)

DFT:

Density functional theory

DLS:

Direct light scattering

DMA:

Differential mobility analysis

DMG:

N,N-Dimethylglycine

DMSO:

Dimethylsulfoxide

dppe:

1,2-Bis(diphenylphosphino)ethane

dppm:

Bis(diphenylphosphino)methane

dppp:

1,3-Bis(diphenylphosphino)propane OR 1,5-Bis(diphenylphosphino)pentane

EA:

Electron affinity

EI:

Electron ionisation

EID:

Electron-induced dissociation

ESI:

Electrospray ionisation

eV:

Electron volt

FAB:

Fast atom bombardment

FT:

Fourier transform

ICP:

Inductively coupled plasma

ICR:

Ion cyclotron resonance

IMS:

Ion mobility spectrometry

IR:

Infrared

K:

Kelvin

MALDI:

Matrix-assisted laser desorption ionisation

MPC:

Monolayer-protected cluster

MS:

Mass spectrometry

MSn :

Tandem mass spectrometry

NC:

Nanocluster

nm:

Nanometre

NMR:

Nuclear magnetic resonance

PD:

Photodissociation

PES:

Photoelectron spectroscopy

RRKM:

Rice–Ramsperger–Kassel–Marcus

SAM:

Self-assembled monolayer

SEC:

Size exclusion chromatography

SIMS:

Secondary ion mass spectrometry

SORI:

Sustained off-resonance irradiation

THF:

Tetrahydrofuran

TIED:

Trapped ion electron diffraction

TOF:

Time of flight

TS:

Transition state

UV–Vis:

Ultraviolet visible

References

  1. Castleman AW, Jena P (2006) Clusters: a bridge between disciplines. Proc Natl Acad Sci 103(28):10552–10553. doi:10.1073/pnas.0601783103

    Article  CAS  Google Scholar 

  2. Castleman AW, Jena P (2006) Clusters: a bridge across the disciplines of environment, materials science, and biology. Proc Natl Acad Sci 103(28):10554–10559. doi:10.1073/pnas.0601780103

    Article  CAS  Google Scholar 

  3. Jena P, Castleman AW (2006) Clusters: a bridge across the disciplines of physics and chemistry. Proc Natl Acad Sci 103(28):10560–10569. doi:10.1073/pnas.0601782103

    Article  CAS  Google Scholar 

  4. Evans DG, Mingos DMP (1985) Molecular orbital analysis of the bonding in penta- and hepta-nuclear gold tertiary phosphine clusters. J Organomet Chem 295(3):389–400

    Article  CAS  Google Scholar 

  5. Mingos DMP (1983) Polyhedral skeletal electron pair approach. A generalised principle for condensed polyhedra. J Chem Soc Chem Commun 12:706–708

    Article  Google Scholar 

  6. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17(9):311–319

    Article  CAS  Google Scholar 

  7. Mingos DMP (1984) Gold cluster compounds – are they metals in miniature? Gold Bull 17(1):5–12

    Article  CAS  Google Scholar 

  8. Mingos DMP (1996) Gold – a flexible friend in cluster chemistry. J Chem Soc Dalton Trans 5:561–566

    Article  Google Scholar 

  9. Mingos DMP, Slee T, Zhenyang L (1990) Bonding models for ligated and bare clusters. Chem Rev 90(2):383–402

    Article  CAS  Google Scholar 

  10. Mingos DMP (2014) Structural and bonding issues in clusters and nano-clusters. Struct Bond. doi:10.1007/430_2014_141

    Google Scholar 

  11. Bond GC, Sermon PA, Webb G, Buchanan DA, Wells PB (1973) Hydrogenation over supported gold catalysts. J Chem Soc Chem Commun 13:444b–445b

    Article  Google Scholar 

  12. Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96(1):292–295

    Article  CAS  Google Scholar 

  13. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115(2):301–309. doi:10.1016/0021-9517(89)90034-1

    Article  CAS  Google Scholar 

  14. Haruta M (2005) Catalysis: gold rush. Nature 437(7062):1098–1099

    Article  CAS  Google Scholar 

  15. Hutchings GJ (2005) Catalysis by gold. Catal Today 100(1–2):55–61

    Article  CAS  Google Scholar 

  16. Bond GC, Louis CD, Thompson DTD (2006) Catalysis by gold. Catalytic science series: v. 6. Imperial College Press, London

    Google Scholar 

  17. Crabtree RH (2011) Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. Chem Rev 112(3):1536–1554. doi:10.1021/cr2002905

    Article  CAS  Google Scholar 

  18. Oliver-Meseguer J, Cabrero-Antonino JR, Domínguez I, Leyva-Pérez A, Corma A (2012) Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338(6113):1452–1455

    Article  CAS  Google Scholar 

  19. Hashmi ASK (2012) Sub-nanosized gold catalysts. Science 338(6113):1434

    Article  CAS  Google Scholar 

  20. Johnston RL (2002) Atomic and molecular clusters. Master’s series in physics and astronomy. Taylor and Francis, London

    Google Scholar 

  21. Boyle R (1661) The sceptical chymist: or Chymico-physical doubts & paradoxes, touching the spagyrist’s principles commonly call’d hypostatical, as they are wont to be propos’d and defended by the generality of alchymists. Whereunto is praemis’d part of another discourse relating to the same subject. London, Printed by J. Cadwell for J. Crooke, 1661

    Google Scholar 

  22. Todd JFJ (1991) Recommendations for nomenclature and symbolism for mass spectroscopy (including an appendix of terms used in vacuum technology). Pure App Chem 63:1541. doi:10.1351/pac199163101541

    Article  CAS  Google Scholar 

  23. Alonso JA (2005) Structure and properties of atomic nanoclusters. Imperial College Press, London

    Google Scholar 

  24. Murray KK, Boyd RK, Eberlin MN, Langley GJ, Li L, Naito Y (2013) Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure Appl Chem ASAP 85(7):1515–1609

    Google Scholar 

  25. Eleanor C (2012) Atom cluster. McGraw-Hill. Available via EBSCOhost. https://ezp.lib.unimelb.edu.au/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsasc&AN=edsasc.059850&scope=site

  26. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer series in materials science: 25. Springer, Berlin

    Google Scholar 

  27. Ott LS, Finke RG (2007) Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers. Coord Chem Rev 251(9–10):1075–1100

    Article  CAS  Google Scholar 

  28. O’Hair RAJ, Khairallah GN (2004) Gas phase ion chemistry of transition metal clusters: production, reactivity, and catalysis. J Clust Sci 15(3):331–363

    Article  Google Scholar 

  29. Böhme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed 44(16):2336–2354

    Article  CAS  Google Scholar 

  30. Ervin KM (2001) Metal-ligand interactions: gas-phase transition metal cluster carbonyls. Int Rev Phys Chem 20(2):127–164

    Article  CAS  Google Scholar 

  31. Armentrout PB (2001) Reactions and thermochemistry of small transition metal cluster ions. Ann Rev Phys Chem 52:423–461

    Google Scholar 

  32. Parent DC, Anderson SL (1992) Chemistry of metal and semimetal cluster ions. Chem Rev 92(7):1541–1565

    Article  CAS  Google Scholar 

  33. Harkness KM, Cliffel DE, McLean JA (2010) Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 135(5):868–874. doi:10.1039/b922291j

    Article  CAS  Google Scholar 

  34. Bernhardt TM (2005) Gas-phase kinetics and catalytic reactions of small silver and gold clusters. Int J Mass Spectrom 243(1):1–29

    Article  CAS  Google Scholar 

  35. Spectrometry ASfM (1995) What is mass spectrometry? Am Soc Mass Spectrom. http://www.asms.org

  36. Henderson W, McIndoe JS (2005) Mass spectrometry of inorganic, coordination and organometallic compounds: tools – techniques – tips. Inorganic chemistry. Chichester, Wiley, Hoboken

    Google Scholar 

  37. McLuckey SA, Wells JM (2001) Mass analysis at the advent of the 21st century. Chem Rev 101(2):571–606

    Article  CAS  Google Scholar 

  38. Farrar JM, Saunders WH (1988) Techniques for the study of ion-molecule reactions, vol 20. Wiley, New York, NY

    Google Scholar 

  39. Freiser BS (1996) Gas-phase metal ion chemistry. J Mass Spectrom 31(7):703–715

    Article  CAS  Google Scholar 

  40. Asamoto B (ed) (1991) FT-ICR/MS: analytical applications of fourier transform ion cyclotron resonance mass spectrometry. vol Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved. VCH

    Google Scholar 

  41. Hammad LA, Gerdes G, Chen P (2005) Electrospray ionization tandem mass spectrometric determination of ligand binding energies in platinum(II) complexes. Organometallics 24(8):1907–1913. doi:10.1021/om0491793

    Article  CAS  Google Scholar 

  42. Schoen E, Zhang X, Zhou Z, Chisholm MH, Chen P (2004) Gas-phase and solution-phase polymerization of epoxides by cr(salen) complexes: evidence for a dinuclear cationic mechanism. Inorg Chem 43(23):7278–7280. doi:10.1021/ic049120o

    Article  CAS  Google Scholar 

  43. Damrauer R (2004) Organometallic chemistry in the flowing afterglow: a review. Organometallics 23(7):1462–1479. doi:10.1021/om030591c

    Article  CAS  Google Scholar 

  44. O’Hair RAJ (2006) The 3D quadrupole ion trap mass spectrometer as a complete chemical laboratory for fundamental gas-phase studies of metal mediated chemistry. Chem Commun (Cambridge) 14:1469–1481. doi:10.1039/b516348j

  45. De Haeck J, Veldeman N, Claes P, Janssens E, Andersson M, Lievens P (2011) Carbon monoxide adsorption on silver doped gold clusters. J Phys Chem A 115(11):2103–2109

    Article  CAS  Google Scholar 

  46. Xie Y, Dong F, Bernstein ER (2011) Experimental and theory studies of the oxidation reaction of neutral gold carbonyl clusters in the gas phase. Catal Today 177(1):64–71

    Article  CAS  Google Scholar 

  47. Knickelbein MB (1999) Reactions of transition metal clusters with small molecules. Ann Rev Phys Chem 50:79–155

    Google Scholar 

  48. Yin S, Bernstein ER (2012) Gas phase chemistry of neutral metal clusters: distribution, reactivity and catalysis. Int J Mass Spectrom 321–322:49–65

    Article  CAS  Google Scholar 

  49. Colaianni L, Kung SC, Taggart D, De Giorgio V, Greaves J, Cioffil N, Penner RM (2009) Gold nanowires: deposition, characterization and application to the mass spectrometry detection of low-molecular weight analytes. In: Trani 2009. 3rd International workshop on advances in sensors and interfaces, IWASI, train, Italy, pp 20–24

    Google Scholar 

  50. McLean JA, Stumpo KA, Russel DH (2005) Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc 127(15):5304–5305

    Article  CAS  Google Scholar 

  51. Huang Y-F, Chang H-T (2007) Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem 79(13):4852–4859. doi:10.1021/ac070023x

    Article  CAS  Google Scholar 

  52. Wu HP, Su CL, Chang HC, Tseng WL (2007) Sample-first preparation: a method for surface-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of cyclic oligosaccharides. Anal Chem 79(16):6215–6221

    Article  CAS  Google Scholar 

  53. Su C-L, Tseng W-L (2007) Gold nanoparticles as assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 79(4):1626–1633. doi:10.1021/ac061747w

    Article  CAS  Google Scholar 

  54. Bruce MI, Liddell MJ (1987) Applications of fast-atom-bombardment mass spectrometry (FAB MS) to organometallic and coordination chemistry. Appl Organomet Chem 1(3):191–226. doi:10.1002/aoc.590010302

    Article  CAS  Google Scholar 

  55. Boyle PD, Johnson BJ, Alexander BD, Casalnuovo JA, Gannon PR, Johnson SM, Larka EA, Mueting AM, Pignolet LH (1987) Characterization of large cationic transition-metal-gold clusters by fast atom bombardment mass spectroscopy (FABMS). New rhenium–gold and platinum–gold clusters: [Au4Re(H)4[P(p-tol)3]2(PPh3)4]+, [Au2Re2(H)6(PPh3)6]+, and [Au6Pt(PPh3)7]2+. Inorg Chem 26(9):1346–1350. doi:10.1021/ic00256a002

    Article  CAS  Google Scholar 

  56. Chisholm DM, Scott McIndoe J (2008) Charged ligands for catalyst immobilisation and analysis. Dalton Trans 30:3933–3945. doi:10.1039/B800371H

    Article  CAS  Google Scholar 

  57. Van der Velden JWA, Bour JJ, Vollenbroek FA, Beurskens PT, Smits JMM (1979) Synthesis of a new pentanuclear gold cluster by metal evaporation. Preparation and X-ray structure determination of [tris{bis(diphenylphosphino)methane}][bis(diphenylphosphino)methanido]pentagold dinitrate. J Chem Soc Chem Commun 24:1162–1163. doi:10.1039/c39790001162

    Article  Google Scholar 

  58. Shichibu Y, Konishi K (2010) HCL-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to “Magic-Number” Au13 clusters. Small 6(11):1216–1220

    Article  CAS  Google Scholar 

  59. Shichibu Y, Kamei Y, Konishi K (2012) Unique [core+two] structure and optical property of a dodeca-ligated undecagold cluster: critical contribution of the exo gold atoms to the electronic structure. Chem Commun 48(61):7559–7561

    Article  CAS  Google Scholar 

  60. Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130(12):3754–3755. doi:10.1021/ja800561b

    Article  CAS  Google Scholar 

  61. Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, Barnett RN, Whetten RL, Landman U, Jin R (2012) Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed 51(52):13114–13118. doi:10.1002/anie.201207098

    Article  CAS  Google Scholar 

  62. Liu J, Lee T, Janes DB, Walsh BL, Melloch MR, Woodall JM, Reifenberger R, Andres RP (2000) Guided self-assembly of Au nanocluster arrays electronically coupled to semiconductor device layers. Appl Phys Lett 77(3):373–375

    Article  CAS  Google Scholar 

  63. Kadossov E, Cabrini S, Burghaus U (2010) Adsorption kinetics and dynamics of CO on silica supported Au nanoclusters – utilizing physical vapor deposition and electron beam lithography. J Mol Catal A Chem 321(1–2):101–109. doi:10.1016/j.molcata.2010.02.009

    Article  CAS  Google Scholar 

  64. Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M (2008) Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew Chem Int Ed 47(48):9265–9268

    Article  CAS  Google Scholar 

  65. Gibson JK (1998) Laser ablation and gas-phase reactions of small gold cluster ions, Au+ n (1≤n≤7). J Vac Sci Technol A Vac Surfaces Films 16(2):653–659

    Article  CAS  Google Scholar 

  66. Hu CW, Kasuya A, Wawro A, Horiguchi N, Czajka R, Nishina Y, Saito Y, Fujita H (1996) Gold clusters deposited on highly oriented pyrolytic graphite by pulse laser ablation and liquid metal ion source. Mater Sci Eng A 217–218:103–107

    Article  Google Scholar 

  67. Sugawara KI, Sobott F, Vakhtin AB (2003) Reactions of gold cluster cations Aun +(n = 1–12) with H2S and H2. J Chem Phys 118(17):7808–7816

    Article  CAS  Google Scholar 

  68. Guo W, Yuan J, Wang E (2012) Organic-soluble fluorescent Au8 clusters generated from heterophase ligand-exchange induced etching of gold nanoparticles and their electrochemiluminescence. Chem Commun 48(25):3076–3078

    Article  CAS  Google Scholar 

  69. Zhou R, Shi M, Chen X, Wang M, Chen H (2009) Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods. Chem Eur J 15(19):4944–4951. doi:10.1002/chem.200802743

    Article  CAS  Google Scholar 

  70. Duan H, Nie S (2007) Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. J Am Chem Soc 129(9):2412–2413. doi:10.1021/ja067727t

    Article  CAS  Google Scholar 

  71. De Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65(3):611–676

    Article  Google Scholar 

  72. Duncan MA (2012) Invited Review Article: Laser vaporization cluster sources. Rev Sci Instrum 83(4):041101

    Google Scholar 

  73. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  74. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29(1):27–35

    Article  CAS  Google Scholar 

  75. Wilcoxon JP, Abrams BL (2006) Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev 35(11):1162–1194. doi:10.1039/B517312B

    Article  CAS  Google Scholar 

  76. Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6(3):240–264

    Article  CAS  Google Scholar 

  77. Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41(9):3594–3623. doi:10.1039/C2CS15325D

    Article  CAS  Google Scholar 

  78. Ayela C, Lalo H, Kuhn A (2013) Introducing a well-ordered volume porosity in 3-dimensional gold microcantilevers. Appl Phys Lett 102(5)

    Google Scholar 

  79. Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  80. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3–4):638–665. doi:10.1016/j.ccr.2012.09.002

    Article  CAS  Google Scholar 

  81. Pei Y, Zeng XC (2012) Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale 4(14):4054–4072. doi:10.1039/c2nr30685a

    Article  CAS  Google Scholar 

  82. Jiang D-E (2010) Understanding and predicting thiolated gold nanoclusters from first principles. Wuli Huaxue Xuebao 26(4):999–1016

    CAS  Google Scholar 

  83. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343–362. doi:10.1039/b9nr00160c

    Article  CAS  Google Scholar 

  84. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc Chem Commun 7:801–802. doi:10.1039/C39940000801

    Article  Google Scholar 

  85. Briñas RP, Hu M, Qian L, Lymar ES, Hainfeld JF (2008) Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J Am Chem Soc 130(3):975–982

    Article  CAS  Google Scholar 

  86. Simpson CA, Farrow CL, Tian P, Billinge SJL, Huffman BJ, Harkness KM, Cliffel DE (2010) Tiopronin gold nanoparticle precursor forms aurophilic ring tetramer. Inorg Chem 49(23):10858–10866. doi:10.1021/ic101146e

    Article  CAS  Google Scholar 

  87. Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131(38):13604–13605. doi:10.1021/ja906087a

    Article  CAS  Google Scholar 

  88. Gaur S, Miller JT, Stellwagen D, Sanampudi A, Kumar CSSR, Spivey JJ (2012) Synthesis, characterization, and testing of supported Au catalysts prepared from atomically-tailored Au38(SC12H25)24 clusters. Phys Chem Chem Phys 14(5):1627–1634. doi:10.1039/C1CP22438G

    Article  CAS  Google Scholar 

  89. Tlahuice-Flores A, Black DM, Bach SBH, Jose-Yacaman M, Whetten RL (2013) Structure & bonding of the gold-subhalide cluster I-Au144Cl60[z]. Phys Chem Chem Phys 15(44):19191–19195. doi:10.1039/c3cp53902d

    Article  CAS  Google Scholar 

  90. Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au67(SR)35 nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem A 117(2):504–517. doi:10.1021/jp311491v

    Article  CAS  Google Scholar 

  91. Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T (2007) Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. J Am Chem Soc 129(37):11322–11323. doi:10.1021/ja073580+

    Article  CAS  Google Scholar 

  92. Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7(7):6138–6145. doi:10.1021/nn401971g

    Article  CAS  Google Scholar 

  93. Malatesta L, Naldini L, Simonetta G, Cariati F (1966) Triphenylphosphine-gold(0)/gold(I) compounds. Coord Chem Rev 1(1–2):255–262. doi:10.1016/S0010-8545(00)80179-4

    Article  CAS  Google Scholar 

  94. Naldini L, Cariati F, Simonetta G, Malatesta L (1966) Gold-tertiary phosphine derivatives with intermetallic bonds. Chem Commun 18:647–648. doi:10.1039/c19660000647

    Google Scholar 

  95. Cariati F, Naldini L, Simonetta G, Malatesta L (1967) Ethyldiphenylphosphine-gold derivatives with intermetallic bonds. Inorg Chim Acta 1(1):24–26. doi:10.1016/S0020-1693(00)93133-5

    Article  CAS  Google Scholar 

  96. Cariati F, Naldini L, Simonetta G, Malatesta L (1967) Clusters of gold compounds with 1,2-bis(diphenylphosphino)ethane. Inorg Chim Acta 1(2):315–318. doi:10.1016/S0020-1693(00)93194-3

    Article  CAS  Google Scholar 

  97. McPartlin M, Malatesta L, Mason R (1969) Cluster complexes of gold(0)-gold(I). J Chem Soc D 7:334. doi:10.1039/c29690000334

    Article  Google Scholar 

  98. Abu-Salah OM, Al-Ohaly ARA, Knobler CB (1985) Preparation, identification, and X-ray structure of a novel pentanuclear gold-copper cluster complex. J Chem Soc Chem Commun (21):1502–1503. doi:10.1039/c39850001502

  99. Briant CE, Hall KP, Mingos DMP (1982) Unusual degradation reaction of icosahedral cluster compounds of gold with chelating diphosphanes and the X-ray structure of di[bis(diphenylphosphino)methanido]digold(I), [Au(Ph2P)2CH]2. J Organomet Chem 229(1):C5–C8. doi:10.1016/S0022-328X(00)89123-8

    Article  CAS  Google Scholar 

  100. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) Synthesis and x-ray structural characterization of the centered icosahedral gold cluster compound [Au13(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. J Chem Soc Chem Commun 5:201–202. doi:10.1039/c39810000201

    Article  Google Scholar 

  101. van der Velden JWA, Bour JJ, Bosman WP, Noordik JH (1983) Reactions of cationic gold clusters with Lewis bases. Preparation and X-ray structure investigation of [Au8(PPh3)7](NO3)2.2CH2Cl2 and Au6(PPh3)4[Co(CO)4]2. Inorg Chem 22(13):1913–1918. doi:10.1021/ic00155a018

    Article  Google Scholar 

  102. van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1982) Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: preparation, X-ray analysis, and gold-197 Moessbauer and phosphorus-31{proton} NMR spectra. Inorg Chem 21(12):4321–4324. doi:10.1021/ic00142a041

    Article  Google Scholar 

  103. van der Velden JWA, Vollenbroek FA, Bour JJ, Beurskens PT, Smits JMM, Bosman WP (1981) Gold clusters containing bidentate phosphine ligands. Preparation and X-ray structure investigation of [Au5(dppmH)3(dppm)](NO3)2 and [Au13(dppmH)6](NO3)n. Recl Trav Chim Pays Bas 100(4):148–152

    Article  Google Scholar 

  104. Demartin F, Manassero M, Naldini L, Ruggeri R, Sansoni M (1981) Synthesis and X-ray characterization of an iodine-bridged tetranuclear gold cluster, di-μ-iodo-tetrakis(triphenylphosphine)-tetrahedro-tetragold. J Chem Soc Chem Commun 5:222–223. doi:10.1039/c39810000222

    Article  Google Scholar 

  105. Cooper MK, Dennis GR, Henrick K, McPartlin M (1980) A new type of gold cluster compound. The syntheses and x-ray structure analysis of pentakis(tricyclohexylphosphine)tris(thiocyanato)enneagold, [Au9{P(C6H11)3}5(SCN)3], and bis{tri(cyclohexyl)phosphineto}gold(I) hexafluorophosphate, [Au{P(C6H11)3}2][PF6]. Inorg Chim Acta 45(4):L151–L152. doi:10.1016/S0020-1693(00)80129-2

    Article  CAS  Google Scholar 

  106. Vollenbroek FA, Bosman WP, Bour JJ, Noordik JH, Beurskens PT (1979) Reactions of gold-phosphine cluster compounds. Preparation and X-ray structure determination of octakis(triphenylphosphine)octagold bis(hexafluorophosphate). J Chem Soc Chem Commun 9:387–388. doi:10.1039/c39790000387

    Article  Google Scholar 

  107. Manassero M, Naldini L, Sansoni M (1979) A new class of gold cluster compounds. Synthesis and X-ray structure of the octakis(triphenylphosphinegold) dializarinsulfonate, [Au8(PPh3)8](aliz)2. J Chem Soc Chem Commun 9:385–386. doi:10.1039/c39790000385

    Article  Google Scholar 

  108. Bellon PL, Cariati F, Manassero M, Naldini L, Sansoni M (1971) Novel gold clusters. Preparation, properties, and X-ray structure determination of salts of octakis(triarylphosphine)enneagold, [Au9L8]X3. J Chem Soc D 22:1423–1424. doi:10.1039/c29710001423

    Article  Google Scholar 

  109. Feld H, Leute A, Rading D, Benninghoven A, Schmid G (1990) Formation of very large gold superclusters (clusters of clusters) as secondary ions up to (Au13)55 by SIMS. J Am Chem Soc 112(22):8166–8167. doi:10.1021/ja00178a051

    Article  CAS  Google Scholar 

  110. Van SMPJ, Brom HB, De JLJ, Schmid G (1986) Physical properties of metal cluster compounds II: d.c.-conductivity of the high-nuclearity gold cluster compound Au55(PPh3)12Cl6. Solid State Commun 60(4):319–322. doi:10.1016/0038-1098(86)90741-6

    Article  Google Scholar 

  111. Schmid G (1982) Complex transition metal compounds. EP66287A2

    Google Scholar 

  112. Schmid G, Pfeil R, Boese R, Brandermann F, Meyer S, Calis GHM, Van der Velden JWA (1981) Au55[P(C6H5)3]12Cl6 – a gold cluster of unusual size. Chem Ber 114(11):3634–3642

    Article  CAS  Google Scholar 

  113. Zavras A, Khairallah GN, O’Hair RAJ (2013) Bis(diphenylphosphino)methane ligated gold cluster cations: synthesis and gas-phase unimolecular reactivity. Int J Mass Spectrom 354–355:242–248. doi:10.1016/j.ijms.2013.05.034

    Article  CAS  Google Scholar 

  114. Robinson PSD, Nguyen TL, Lioe H, O’Hair RAJ, Khairallah GN (2012) Synthesis and gas-phase uni- and bi-molecular reactivity of bisphosphine ligated gold clusters, [AuxLy]n +. Int J Mass Spectrom 330–332:109–117

    Article  CAS  Google Scholar 

  115. Pettibone JM, Hudgens JW (2011) Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters? ACS Nano 5(4):2989–3002

    Article  CAS  Google Scholar 

  116. Bergeron DE, Coskuner O, Hudgens JW, Gonzalez CA (2008) Ligand exchange reactions in the formation of diphosphine-protected gold clusters. J Phys Chem C 112(33):12808–12814

    Article  CAS  Google Scholar 

  117. Hudgens JW, Pettibone JM, Senftle TP, Bratton RN (2011) Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters. Inorg Chem 50(20):10178–10189. doi:10.1021/ic2018506

    Article  CAS  Google Scholar 

  118. Evans DG, Mingos DMP (1982) Molecular orbital analysis of the bonding in low nuclearity gold and platinum tertiary phosphine complexes and the development of isolobal analogies for the M(PR3) fragment. J Organomet Chem 232(2):171–191. doi:10.1016/S0022-328X(00)87645-7

    Article  CAS  Google Scholar 

  119. Hoffmann R (1982) Building bridges between inorganic and organic chemistry (nobel lecture). Angew Chem Int Ed Engl 21(10):711–724. doi:10.1002/anie.198207113

    Article  Google Scholar 

  120. Pan QJ, Zhou X, Guo YR, Fu HG, Zhang HX (2009) Inorg Chem 48:2844–2854

    Article  CAS  Google Scholar 

  121. King RB (1986) Inorg Chim Acta 116:109–117

    Article  CAS  Google Scholar 

  122. Schwerdtfeger P, Hermann HL, Schmidbaur H (2003) Inorg Chem 42:1334–1342

    Article  CAS  Google Scholar 

  123. Mingos DMP (1982) Philos Trans R Soc A 308:75–83

    Article  CAS  Google Scholar 

  124. Lo CTF, Karan K, Davis BR (2007) Ind Eng Chem Res 46:5478–5484

    Article  CAS  Google Scholar 

  125. Brown HC, Mead EJ, Shoaf CJ (1956) J Am Chem Soc 78:3616–3620

    Article  CAS  Google Scholar 

  126. Majimel J, Bacinello D, Durand E, Vallee F, Treguer-Delapierre M (2008) Langmuir 24:4289–4294

    Article  CAS  Google Scholar 

  127. Elian M, Chen MML, Mingos DMP, Hoffmann R (1976) Inorg Chem 15:1148–1155

    Article  CAS  Google Scholar 

  128. Mingos DMP, Slee T, Lin ZY (1990) Chem Rev 90:383–402

    Article  CAS  Google Scholar 

  129. Mingos DMP (1976) J Chem Soc Dalton Trans 1163–1169

    Google Scholar 

  130. Mingos DMP (1984) Polyhedron 3:1289–1297

    Article  CAS  Google Scholar 

  131. Mingos DMP (1996) J Chem Soc Dalton Trans 561–566

    Google Scholar 

  132. Pyykkö P (2004) Angew Chem Int Ed 43:4412–4456

    Article  CAS  Google Scholar 

  133. Shafai G, Hong S, Bertino MF, Rahman TS (2009) J Phys Chem C 113:12072–12078

    Article  CAS  Google Scholar 

  134. Vollenbroek FA, Bour JJ, Vandervelden JWA (1980) Recl Trav Chim Pays Bas 99:137–141

    Article  CAS  Google Scholar 

  135. Van Der Linden JGM, Paulissen MLH, Schmitz JEJ (1983) J Am Chem Soc 105:1903–1907

    Article  Google Scholar 

  136. Cheetham GMT, Harding MM, Haggitt JL, Mingos DMP, Powell HR (1993) J. Chem Soc D Chem Commun 1000–1001

    Google Scholar 

  137. Laguna A, Laguna M, Gimeno MC, Jones PG (1992) Organometallics 11:2759–2760

    Article  CAS  Google Scholar 

  138. Wang BS, Hou H, Yoder LM, Muckerman JT, Fockenberg C (2003) J Phys Chem A 107:11414–11426

    Article  CAS  Google Scholar 

  139. Hong S, Shafai G, Bertino M, Rahman TS (2011) J Phys Chem C 115:14478–14487

    Article  CAS  Google Scholar 

  140. Bergeron DE, Hudgens JW (2007) Ligand dissociation and core fission from diphosphine-protected gold clusters. J Phys Chem C 111(23):8195–8201

    Article  CAS  Google Scholar 

  141. Pettibone JM, Hudgens JW (2012) Reaction network governing diphosphine-protected gold nanocluster formation from nascent cationic platforms. Phys Chem Chem Phys 14(12):4142–4154

    Article  CAS  Google Scholar 

  142. Pettibone JM, Hudgens JW (2010) Synthetic approach for tunable, size-selective formation of monodisperse, diphosphine-protected gold nanoclusters. J Phys Chem Lett 1(17):2536–2540

    Article  CAS  Google Scholar 

  143. Colton R, Harrison KL, Mah YA, Traeger JC (1995) Cationic phosphine complexes of gold(I): an electrospray mass spectrometric study. Inorg Chim Acta 231(1–2):65–71

    Article  CAS  Google Scholar 

  144. Muetterties EL, Alegranti CW (1970) Solution structure of coinage metal–phosphine complexes. J Am Chem Soc 92(13):4114–4115. doi:10.1021/ja00716a052

    Article  CAS  Google Scholar 

  145. Mays MJ, Vergnano PA (1979) Structure and bonding in gold(I) compounds. Part 4. A phosphorus-31 nuclear magnetic study of the structure of some gold(I) phosphine complexes in solution. J Chem Soc Dalton Trans 6:1112–1115. doi:10.1039/DT9790001112

    Article  Google Scholar 

  146. Pettibone JM, Hudgens JW (2012) Predictive gold nanocluster formation controlled by metal-ligand complexes. Small 8(5):715–725

    Article  CAS  Google Scholar 

  147. Pyykkö P (1997) Strong closed-shell interactions in inorganic chemistry. Chem Rev 97(3):597–636. doi:10.1021/cr940396v

    Article  Google Scholar 

  148. Pyykkö P, Mendizabal F (1998) Theory of d 10 – d 10 closed-shell attraction. III. Rings. Inorg Chem 37(12):3018–3025

    Article  Google Scholar 

  149. Bertino MF, Sun ZM, Zhang R, Wang LS (2006) Facile syntheses of monodisperse ultrasmall Au clusters. J Phys Chem B 110(43):21416–21418

    Article  CAS  Google Scholar 

  150. Golightly JS, Gao L, Castleman AW Jr, Bergeron DE, Hudgens JW, Magyar RJ, Gonzalez CA (2007) Impact of swapping ethyl for phenyl groups on diphosphine-protected undecagold. J Phys Chem C 111(40):14625–14627

    Article  CAS  Google Scholar 

  151. Yanagimoto Y, Negishi Y, Fujihara H, Tsukuda T (2006) Chiroptical activity of BINAP-stabilized undecagold clusters. J Phys Chem B 110(24):11611–11614

    Article  CAS  Google Scholar 

  152. Brown LO, Hutchison JE (1999) Controlled growth of gold nanoparticles during ligand exchange [14]. J Am Chem Soc 121(4):882–883

    Article  CAS  Google Scholar 

  153. Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103(44):9394–9396

    Article  CAS  Google Scholar 

  154. Maye MM, Zheng W, Leibowitz FL, Ly NK, Zhong CJ (2000) Heating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulations. Langmuir 16(2):490–497

    Article  CAS  Google Scholar 

  155. Shichibu Y, Negishi Y, Tsunoyama H, Kanehara M, Teranishi T, Tsukuda T (2007) Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small 3(5):835–839

    Article  CAS  Google Scholar 

  156. Toikkanen O, Ruiz V, Rönnholm G, Kalkkinen N, Liljeroth P, Quinn BM (2008) Synthesis and stability of monolayer-protected Au38 clusters. J Am Chem Soc 130(33):11049–11055

    Article  CAS  Google Scholar 

  157. Kanehara M, Sakurai JI, Sugimura H, Teranishi T (2009) Room-temperature size evolution of thiol-protected gold nanoparticles assisted by proton acids and halogen anions. J Am Chem Soc 131(5):1630–1631

    Article  CAS  Google Scholar 

  158. Davis RE, Gottbrath JA (1962) Boron hydrides. V. Methanolysis of sodium borohydride. J Am Chem Soc 84(6):895–898

    Article  CAS  Google Scholar 

  159. Kamei Y, Shichibu Y, Konishi K (2011) Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: octanuclear clusters with edge-sharing gold tetrahedron motifs. Angew Chem Int Ed 50(32):7442–7445

    Article  CAS  Google Scholar 

  160. Wen F, Englert U, Gutrath B, Simon U (2008) Crystal structure, electrochemical and optical properties of [Au9(PPh3)8](NO3)3. Eur J Inorg Chem 1:106–111

    Article  CAS  Google Scholar 

  161. Ticknor BW, Bandyopadhyay B, Duncan MA (2008) Photodissociation of noble metal-doped carbon clusters. J Phys Chem A 112(48):12355–12366

    Article  CAS  Google Scholar 

  162. Cohen Y, Bernshtein V, Armon E, Bekkerman A, Kolodney E (2011) Formation and emission of gold and silver carbide cluster ions in a single C60-surface impact at keV energies: Experiment and calculations. J Chem Phys 134(12):124701

    Google Scholar 

  163. Pyykko P, Patzschke M, Suurpere J (2003) Calculated structures of [Au=C=Au]2+ and related systems. Chem Phys Lett 381(1,2):45–52. doi:10.1016/j.cplett.2003.09.045

    Article  CAS  Google Scholar 

  164. Li D-Z, Li S-D (2011) A density functional investigation on C2Aun + (n = 1, 3, 5) and C2Aun (n = 2, 4, 6): from gold terminals, gold bridges, to gold triangles. J Cluster Sci 22(3):331–341. doi:10.1007/s10876-011-0383-5

    Article  CAS  Google Scholar 

  165. Bolbach G, Main DE, Standing KG, Westmore JB (1995) Structures of gas phase oligomeric gold–oxygen–hydrogen negative ions formed by cesium ion bombardment of vapor-deposited gold surfaces. Inorg Chem 34(1):247–253. doi:10.1021/ic00105a040

    Article  CAS  Google Scholar 

  166. Panyala NR, Pena-Mendez EM, Havel J (2012) Laser ablation synthesis of new gold phosphides using red phosphorus and nanogold as precursors. Laser desorption ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 26(9):1100–1108. doi:10.1002/rcm.6207

    Article  CAS  Google Scholar 

  167. Svihlova K, Prokes L, Skacelova D, Pena-Mendez EM, Havel J (2013) Laser ablation synthesis of new gold tellurides using tellurium and nanogold as precursors. Laser desorption ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 27(14):1600–1606. doi:10.1002/rcm.6613

    Article  CAS  Google Scholar 

  168. Maity P, Tsunoyama H, Yamauchi M, Xie S, Tsukuda T (2011) Organogold clusters protected by phenylacetylene. J Am Chem Soc 133(50):20123–20125

    Article  CAS  Google Scholar 

  169. Schooss D, Weis P, Hampe O, Kappes MM (2010) Determining the size-dependent structure of ligand-free gold-cluster ions. Philos Trans Royal Soc A Math Phys Eng Sci 368(1915):1211–1243

    Article  CAS  Google Scholar 

  170. Becker S, Dietrich G, Hasse HU, Klisch N, Kluge HJ, Kreisle D, Krückeberg S, Lindinger M, Lützenkirchen K, Schweikhard L, Weidele H, Ziegler J (1994) Fragmentation pattern of gold clusters collided with xenon atoms. Comput Mater Sci 2(3–4):633–637. doi:10.1016/0927-0256(94)90099-X

    Article  CAS  Google Scholar 

  171. Becker S, Dietrich G, Hasse HU, Klisch N, Kluge HJ, Kreisle D, Krueckeberg S, Lindinger M, Luetzenkirchen K et al (1994) Fragmentation of gold clusters stored in a Penning trap. Rapid Commun Mass Spectrom 8(5):401–402. doi:10.1002/rcm.1290080512

    Article  CAS  Google Scholar 

  172. Schweikhard L, Beiersdorfer P, Bell W, Dietrich G, Krueckeberg S, Luetzenkirchen K, Obst B, Ziegler J (1996) Production and investigation of multiply charged metal clusters in a Penning trap. Hyperfine Interact 99(1–3):97–104. doi:10.1007/BF02274913

    Article  CAS  Google Scholar 

  173. Schweikhard L, Dietrich G, Kruckeberg S, Lutzenkirchen K, Walther C, Ziegler J (1997) Collision induced dissociation of doubly charged stored metal cluster ions. Rapid Commun Mass Spectrom 11(14):1592–1595. doi:10.1002/(SICI)1097-0231(199709)11:14<1592::AID-RCM996>3.0.CO;2-1

    Article  CAS  Google Scholar 

  174. Ziegler J, Dietrich G, Kruckeberg S, Lutzenkirchen K, Schweikhard L, Walther C (1998) Dissociation pathways of doubly and triply charged gold clusters. Hyperfine Interact 115(1–4):171–179. doi:10.1023/A:1012661008519

    Article  CAS  Google Scholar 

  175. Weidele H, Vogel M, Herlert A, Kruckeberg S, Lievens P, Silverans RE, Walther C, Schweikhard L (1999) Decay pathways of stored metal-cluster anions after collisional activation. Eur Phys J D 9(1–4):173–177. doi:10.1007/s100530050421

    CAS  Google Scholar 

  176. Spasov VA, Shi Y, Ervin KM (2000) Time-resolved photodissociation and threshold collision-induced dissociation of anionic gold clusters. Chem Phys 262(1):75–91. doi:10.1016/S0301-0104(00)00165-8

    Article  CAS  Google Scholar 

  177. Ziegler J, Dietrich G, Kruckeberg S, Lutzenkirchen K, Schweikhard L, Walther C (2000) Multicollision-induced dissociation of multiply charged gold clusters, Aun 2+, n = 7–35, and Aun 3+, n = 19–35. Int J Mass Spectrom 202(1–3):47–54

    Article  CAS  Google Scholar 

  178. Herlert A, Schweikhard L (2012) Electron binding energies from collisional activation of metal-cluster dianions. Appl Phys B Lasers Opt 107(4):1131–1143. doi:10.1007/s00340-011-4792-9

    Article  CAS  Google Scholar 

  179. Walther C, Becker S, Dietrich G, Kluge HJ, Lindlinger M, Luetzenkirchen K, Schweikhard L, Ziegler J (1996) Photofragmentation of metal clusters stored in a penning trap. Z Phys D At Mol Clusters 38(1):51–58. doi:10.1007/s004600050063

    Article  CAS  Google Scholar 

  180. Lindinger M, Dasgupta K, Dietrich G, Kruckeberg S, Kuznetsov S, Lutzenkirchen K, Schweikhard L, Walther C, Ziegler J (1997) Time resolved photofragmentation of Aun + and Agn + clusters (n = 9, 21). Z Phys D At Mol Clusters 40(1–4):347–350. doi:10.1007/s004600050225

    Article  CAS  Google Scholar 

  181. Vogel M, Hansen K, Herlert A, Schweikhard L (2001) Energy dependence of the decay pathways of optically excited small gold clusters. Appl Phys B Lasers Opt 73(4):411–416. doi:10.1007/s003400100719

    Article  CAS  Google Scholar 

  182. Vogel M, Hansen K, Herlert A, Schweikhard L (2001) Decay pathways of small gold clusters. The competition between monomer and dimer evaporation. Eur Phys J D 16(1–3):73–76. doi:10.1007/s100530170063

    Article  CAS  Google Scholar 

  183. Vogel M, Hansen K, Herlert A, Schweikhard L (2001) Determination of dissociation energies by use of energy-dependent decay pathway branching ratios. Chem Phys Lett 346(1,2):117–122. doi:10.1016/S0009-2614(01)00935-6

    Article  CAS  Google Scholar 

  184. Vogel M, Hansen K, Herlert A, Schweikhard L (2001) Model-free determination of dissociation energies of polyatomic systems. Phys Rev Lett 87(1):013401/013401–013401/013404. doi:10.1103/PhysRevLett.87.013401

    Article  CAS  Google Scholar 

  185. Herlert A, Schweikhard L, Vogel M (2002) Photoinduced dissociation of anionic and electron detachment of dianionic gold clusters by use of a laser pointer. Int J Mass Spectrom 213(2/3):157–161. doi:10.1016/S1387-3806(01)00529-2

    Article  CAS  Google Scholar 

  186. Vogel M, Hansen K, Herlert A, Schweikhard L (2002) Dimer dissociation energies of small odd-size clusters Aun +. Eur Phys J D 21(2):163–166. doi:10.1140/epjd/e2002-00190-3

    Article  CAS  Google Scholar 

  187. Vogel M, Hansen K, Herlert A, Schweikhard L (2002) Multisequential photofragmentation of size-selected gold cluster ions. Phys Rev A At Mol Opt Phys 66(3):033201/033201–033201/033209. doi:10.1103/PhysRevA.66.033201

    Article  CAS  Google Scholar 

  188. Herlert A, Schweikhard L (2003) Production of dianionic and trianionic noble metal clusters in a Penning trap. Int J Mass Spectrom 229(1–2):19–25. doi:10.1016/S1387-3806(03)00251-3

    Article  CAS  Google Scholar 

  189. Vogel M, Herlert A, Schweikhard L (2003) Photodissociation of small group-11 metal cluster ions: fragmentation pathways and photoabsorption cross sections. J Am Soc Mass Spectrom 14(6):614–621. doi:10.1016/S1044-0305(03)00203-4

    Article  CAS  Google Scholar 

  190. Vogel M, Hansen K, Schweikhard L (2004) Signature of cluster isomers in time-resolved photodissociation experiments. Int J Mass Spectrom 233(1–3):117–123. doi:10.1016/j.ijms.2003.12.027

    Article  CAS  Google Scholar 

  191. Schweikhard L, Hansen K, Herlert A, Herraiz LMD, Vogel M (2005) Photodissociation of stored metal clusters. Eur Phys J D 36(2):179–185. doi:10.1140/epjd/e2005-00264-8

    Article  CAS  Google Scholar 

  192. Hansen K, Herlert A, Schweikhard L, Vogel M (2006) Dissociation energies of gold clusters AuN+, N=7–7. Phys Rev A At Mol Opt Phys 73(6):063202/063201–063202/063214. doi:10.1103/PhysRevA.73.063202

    Article  CAS  Google Scholar 

  193. Herlert A, Schweikhard L (2006) First observation of delayed electron emission from dianionic metal clusters. Int J Mass Spectrom 252(2):151–156. doi:10.1016/j.ijms.2006.01.051

    Article  CAS  Google Scholar 

  194. Herlert A, Schweikhard L (2006) Delayed neutral-atom evaporation of photoexcited anionic gold clusters. Int J Mass Spectrom 249(250):215–221. doi:10.1016/j.ijms.2005.12.027

    Article  CAS  Google Scholar 

  195. Herlert A, Schweikhard L (2012) Two-electron emission after photoexcitation of metal-cluster dianions. New J Phys 14(May):055015/055011–055015/055024. doi:10.1088/1367-2630/14/5/055015

    Google Scholar 

  196. Herlert A, Kruckeberg S, Schweikhard L, Vogel M, Walther C (1999) First observation of doubly charged negative gold cluster ions. Phys Scr T T80B (IX International Conference on the Physics of Highly Charged Ions, 1998):200–202. doi:10.1238/Physica.Topical.080a00200

  197. Schweikhard L, Herlert A, Kruckeberg S, Vogel M, Walther C (1999) Electronic effects in the production of small dianionic gold clusters by electron attachment on to stored Aun , n = 12–28. Philos Mag B 79(9):1343–1352

    Article  CAS  Google Scholar 

  198. Herlert A, Kruckeberg S, Schweikhard L, Vogel M, Walther C (2000) Electron impact ionization/dissociation of size selected gold cluster cations. J Electron Spectrosc Relat Phenom 106(2–3):179–186. doi:10.1016/S0368-2048(99)00075-4

    Article  CAS  Google Scholar 

  199. Yannouleas C, Landman U, Herlert A, Schweikhard L (2001) Trianionic gold clusters. Eur Phys J D 16(1–3):81–85. doi:10.1007/s100530170065

    Article  CAS  Google Scholar 

  200. Yannouleas C, Landman U, Herlert A, Schweikhard L (2001) Multiply charged metal cluster anions. Phys Rev Lett 86(14):2996–2999. doi:10.1103/PhysRevLett.86.2996

    Article  CAS  Google Scholar 

  201. Herlert A, Jertz R, Alonso OJ, Gonzalez MAJ, Schweikhard L (2002) The influence of the trapping potential on the attachment of a second electron to stored metal cluster and fullerene anions. Int J Mass Spectrom 218(3):217–225. doi:10.1016/S1387-3806(02)00723-6

    Article  CAS  Google Scholar 

  202. Zhang HF, Stender M, Zhang R, Wang C, Li J, Wang LS (2004) Toward the solution synthesis of the tetrahedral Au20 cluster. J Phys Chem B 108(33):12259–12263

    Article  CAS  Google Scholar 

  203. Li J, Li X, Zhai HJ, Wang LS (2003) Au20: a tetrahedral cluster. Science 299(5608):864–867

    Article  CAS  Google Scholar 

  204. Pease LF III, Elliott JT, Tsai D-H, Zachariah MR, Tarlov MJ (2008) Determination of protein aggregation with differential mobility analysis: application to IgG antibody. Biotechnol Bioeng 101(6):1214–1222. doi:10.1002/bit.22017

    Article  CAS  Google Scholar 

  205. Eiceman GA, Karpas Z (2010) Ion mobility spectrometry. 2nd ed. Taylor and Francis, Boca, Florida

    Google Scholar 

  206. Lapthorn C, Pullen F, Chowdhry BZ (2013) Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev 32(1):43–71. doi:10.1002/mas.21349

    Article  CAS  Google Scholar 

  207. Weis P (2005) Structure determination of gaseous metal and semi-metal cluster ions by ion mobility spectrometry. Int J Mass Spectrom 245(1–3):1–13. doi:10.1016/j.ijms.2005.06.005

    Article  CAS  Google Scholar 

  208. Gilb S, Weis P, Furche F, Alhrichs R, Kappes MM (2002) Structures of small gold cluster cations (Aun +, n<14): ion mobility measurements versus density functional calculations. J Chem Phys 116(10):4094–4101

    Article  CAS  Google Scholar 

  209. Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S, Bierweiler T, Kappes MM (2002) The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J Chem Phys 117(15):6982–6990

    Article  CAS  Google Scholar 

  210. Lenggoro IW, Xia B, Okuyama K, De la Mora JF (2002) Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods. Langmuir 18(12):4584–4591

    Article  CAS  Google Scholar 

  211. Tsai DH, Pease LF 3rd, Zangmeister RA, Tarlov MJ, Zachariah MR (2009) Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis. Langmuir 25(1):140–146. doi:10.1021/la703164j

    Article  CAS  Google Scholar 

  212. Li M, You R, Mulholland GW, Zachariah MR (2013) Evaluating the mobility of nanorods in electric fields. Aerosol Sci Technol 47(10):1101–1107. doi:10.1080.02786826.2013.819565

    Article  CAS  Google Scholar 

  213. Tsai D-H, Del RFW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27(6):2464–2477. doi:10.1021/la104124d

    Article  CAS  Google Scholar 

  214. Elzey S, Tsai DH, Yu LL, Winchester MR, Kelley ME, Hackley VA (2013) Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Anal Bioanal Chem 405(7):2279–2288. doi:10.1007/s00216-012-6617-z

    Article  CAS  Google Scholar 

  215. Tsai D-H, Cho TJ, Elzey SR, Gigault JC, Hackley VA (2013) Quantitative analysis of dendron-conjugated cisplatin-complexed gold nanoparticles using scanning particle mobility mass spectrometry. Nanoscale 5(12):5390–5395. doi:10.1039/c3nr00543g

    Article  CAS  Google Scholar 

  216. Angel LA, Majors LT, Dharmaratne AC, Dass A (2010) Ion mobility mass spectrometry of Au25(SCH2CH2Ph)18 nanoclusters. ACS Nano 4(8):4691–4700

    Article  CAS  Google Scholar 

  217. Harkness KM, Fenn LS, Cliffel DE, McLean JA (2010) Surface fragmentation of complexes from thiolate protected gold nanoparticles by ion mobility-mass spectrometry. Anal Chem (Washington, DC, U S) 82(7):3061–3066. doi:10.1021/ac100251d

    Article  CAS  Google Scholar 

  218. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science (Washington, DC, U S) 318(5849):430–433. doi:10.1126/science.1148624

    Article  CAS  Google Scholar 

  219. Harkness KM, Balinski A, McLean JA, Cliffel DE (2011) Nanoscale phase segregation of mixed thiolates on gold nanoparticles. Angew Chem Int Ed 50(45):10554–10559

    Article  CAS  Google Scholar 

  220. Asmis KR, Fielicke A, von Helden G, Meijer G (2007) Chapter 8: Vibrational spectroscopy of gas-phase clusters and complexes. Chem Phys of Solid Surfaces, pp 327–375

    Google Scholar 

  221. Lapoutre VJF, Redlich B, van der Meer AFG, Oomens J, Bakker JM, Sweeney A, Mookherjee A, Armentrout PB (2013) Structures of the dehydrogenation products of methane activation by 5d transition metal cations. J Phys Chem A 117(20):4115–4126. doi:10.1021/jp400305k

    Article  CAS  Google Scholar 

  222. Asmis KR, Wende T, Bruemmer M, Gause O, Santambrogio G, Stanca-Kaposta EC, Doebler J, Niedziela A, Sauer J (2012) Structural variability in transition metal oxide clusters: gas phase vibrational spectroscopy of V3O6-8+. Phys Chem Chem Phys 14(26):9377–9388. doi:10.1039/c2cp40245a

    Article  CAS  Google Scholar 

  223. Asmis KR (2012) Structure characterization of metal oxide clusters by vibrational spectroscopy: possibilities and prospects. Phys Chem Chem Phys 14(26):9270–9281. doi:10.1039/c2cp40762k

    Article  CAS  Google Scholar 

  224. Ghiringhelli LM, Gruene P, Lyon JT, Rayner DM, Meijer G, Fielicke A, Scheffler M (2013) Not so loosely bound rare gas atoms: finite-temperature vibrational fingerprints of neutral gold-cluster complexes. New J Phys 15(8):083003. doi:10.1088/1367-2630/15/8/083003

    Article  CAS  Google Scholar 

  225. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science (Washington, DC, U S) 321(5889):674–676. doi:10.1126/science.1161166

    Article  CAS  Google Scholar 

  226. Woodham AP, Meijer G, Fielicke A (2013) Charge separation promoted activation of molecular oxygen by neutral gold clusters. J Am Chem Soc 135(5):1727–1730. doi:10.1021/ja312223t

    Article  CAS  Google Scholar 

  227. Fielicke A, Von HG, Meijer G, Pedersen DB, Simard B, Rayner DM (2005) Gold cluster carbonyls: saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures. J Am Chem Soc 127(23):8416–8423. doi:10.1021/ja0509230

    Article  CAS  Google Scholar 

  228. Donald WA, O’Hair RAJ (2012) Shapeshifting: ligation by 1,4-cyclohexadiene induces a structural change in Ag5+. Dalton Trans 41(11):3185–3193. doi:10.1039/c2dt11876a

    Article  CAS  Google Scholar 

  229. Manard MJ, Kemper PR, Bowers MT (2005) Probing the structure of gas-phase metallic clusters via ligation energetics: sequential addition of C2H4 to Agm + (m = 3–7). J Am Chem Soc 127(28):9994–9995. doi:10.1021/ja052251j

    Article  CAS  Google Scholar 

  230. Rousseau R, Dietrich G, Kruckeberg S, Lutzenkirchen K, Marx D, Schweikhard L, Walther C (1998) Probing cluster structures with sensor molecules: methanol adsorbed onto gold clusters. Chem Phys Lett 295(1,2):41–46. doi:10.1016/S0009-2614(98)00926-9

    Article  CAS  Google Scholar 

  231. Fielicke A, von Helden G, Meijer G, Simard B, Rayner DM (2005) Direct observation of size dependent activation of NO on gold clusters. Phys Chem Chem Phys 7(23):3906–3909. doi:10.1039/b511710k

    Article  CAS  Google Scholar 

  232. Woodham AP, Meijer G, Fielicke A (2012) Activation of molecular oxygen by anionic gold clusters. Angew Chem Int Ed 51(18):4444–4447

    Article  CAS  Google Scholar 

  233. Collings BA, Athanassenas K, Lacombe D, Rayner DM, Hackett PA (1994) Optical absorption spectra of Au7, Au9, Au11, and Au13, and their cations: gold clusters with 6, 7, 8, 9, 10, 11, 12, and 13 s-electrons. J Chem Phys 101(5):3506–3513. doi:10.1063.1.4675.5

    Article  CAS  Google Scholar 

  234. Hamouda R, Bellina B, Bertorelle F, Compagnon I, Antoine R, Broyer M, Rayane D, Dugourd P (2010) Electron emission of gas-phase [Au25(SG)18-6H]7 – gold cluster and its action spectroscopy. J Phys Chem Lett 1(21):3189–3194. doi:10.1021/jz101287m

    Article  CAS  Google Scholar 

  235. Schooss D, Weis P, Hampe O, Kappes MM (2010) Determining the size-dependent structure of ligand-free gold-cluster ions. Philos Trans R Soc A 368(1915):1211–1243. doi:10.1098/rsta.2009.0269

    Article  CAS  Google Scholar 

  236. Xing X, Yoon B, Landman U, Parks JH (2006) Structural evolution of Au nanoclusters: from planar to cage to tubular motifs. Phys Rev B Condens Matter Mater Phys 74(16):165423/165421–165423/165426. doi:10.1103/PhysRevB.74.165423

    Article  CAS  Google Scholar 

  237. Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F (2008) 2D-3D transition of gold cluster anions resolved. Phys Rev A At Mol Opt Phys 77(5):058202

    Google Scholar 

  238. Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) Ultraviolet photoelectron spectra of coinage metal clusters. J Chem Phys 96(4):3319–3329

    Article  CAS  Google Scholar 

  239. Wang LM, Wang LS (2012) Probing the electronic properties and structural evolution of anionic gold clusters in the gas phase. Nanoscale 4(14):4038–4053

    Article  CAS  Google Scholar 

  240. Häkkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS (2003) On the electronic and atomic structures of small AuN – (N = 4–14) clusters: a photoelectron spectroscopy and density-functional study. J Phys Chem A 107(32):6168–6175

    Article  CAS  Google Scholar 

  241. Huang W, Wang LS (2009) Au10: isomerism and structure-dependent O2 reactivity. Phys Chem Chem Phys 11(15):2663–2667. doi:10.1039/b823159a

    Article  CAS  Google Scholar 

  242. Stolcic D, Fischer M, Gantefoer G, Kim YD, Sun Q, Jena P (2003) Direct observation of key reaction intermediates on gold clusters. J Am Chem Soc 125(10):2848–2849. doi:10.1021/ja0293406

    Article  CAS  Google Scholar 

  243. Huang W, Zhai HJ, Wang LS (2010) Probing the interactions of O2 with small gold cluster anions (Aun , n = 1–7): chemisorption vs physisorption. J Am Chem Soc 132(12):4344–4351

    Article  CAS  Google Scholar 

  244. Pal R, Wang L-M, Huang W, Wang L-S, Zeng XC (2011) Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun− (n = 13–15) and MAun− (n = 12–14; M=Ag, Cu). J Chem Phys 134(5):054306. 10.1063.1.35334.3

  245. Bulusu S, Li X, Wang LS, Zeng XC (2006) Evidence of hollow golden cages. Proc Natl Acad Sci U S A 103(22):8326–8330

    Article  CAS  Google Scholar 

  246. Zhu M, Qian H, Jin R (2009) Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J Am Chem Soc 131(21):7220–7221. doi:10.1021/ja902208h

    Article  CAS  Google Scholar 

  247. Bulusu S, Li X, Wang LS, Zeng XC (2007) Structural transitions from pyramidal to fused planar to tubular to core/shell compact in gold clusters: Aun (n = 21–25). J Phys Chem C 111(11):4190–4198

    Article  CAS  Google Scholar 

  248. Ji M, Gu X, Li X, Gong X, Li J, Wang L-S (2005) Experimental and theoretical investigation of the electronic and geometrical structures of the Au32 cluster. Angew Chem Int Ed 44(43):7119–7123. doi:10.1002/anie.200502795

    Article  CAS  Google Scholar 

  249. Gu X, Bulusu S, Li X, Zeng XC, Li J, Gong XG, Wang LS (2007) Au34: a fluxional core-shell cluster. J Phys Chem C 111(23):8228–8232

    Article  CAS  Google Scholar 

  250. Kebarle P (1992) Ion molecule equilibria, how and why. J Am Soc Mass Spectrom 3(1):1–9. doi:10.1016/1044-0305(92)85012-9

    Article  CAS  Google Scholar 

  251. Kebarle P (2000) Gas phase ion thermochemistry based on ion-equilibria from the ionosphere to the reactive centers of enzymes. Int J Mass Spectrom 200(1–3):313–330. doi:10.1016/S1387-3806(00)00326-2

    Article  CAS  Google Scholar 

  252. Peschke M, Blades AT, Kebarle P (2001) Determination of sequential metal ion-ligand binding energies by gas phase equilibria and theoretical calculations: application of results to biochemical processes. Adv Met Semicond Clusters 5 (Metal Ion Solvation and Metal-Ligand Interactions):77–119

    Google Scholar 

  253. Armentrout PB (2003) Guided ion beam studies of transition metal-ligand thermochemistry. Int J Mass Spectrom 227(3):289–302

    Article  CAS  Google Scholar 

  254. Armentrout PB (2003) Threshold collision-induced dissociations for the determination of accurate gas-phase binding energies and reaction barriers. Top Curr Chem (Modern Mass Spectrometry) 225:233–262. doi:10.1007/b10468

  255. Rodgers MT (2004) Armentrout PB gas phase coordination chemistry. Elsevier, Oxford, UK, pp 141–158, 141 plate. doi:10.1016/B0-08-043748-6/01119-1

  256. Armentrout PB (2003) The thermochemistry of adsorbates on transition metal cluster ions: relationship to bulk-phase properties. Eur J Mass Spectrom 9(6):531–538. doi:10.1255/ejms.585

    Article  CAS  Google Scholar 

  257. Armentrout PB (2010) Reactivity and thermochemistry of transition metal cluster cations. Elsevier, Amsterdam, Netherland, pp 269–297. doi:10.1016/B978-0-444-53440-8.00006-9

  258. Li F, Hinton CS, Citir M, Liu F, Armentrout PB (2011) Guided ion beam and theoretical study of the reactions of Au+ with H2, D2, and HD. J Chem Phys 134(2):024310

    Google Scholar 

  259. Li FX, Gorham K, Armentrout PB (2010) Oxidation of atomic gold ions: thermochemistry for the activation of O2 and N2O by Au+(1S 0and 3D). J Phys Chem A 114(42):11043–11052

    Article  CAS  Google Scholar 

  260. Li FX, Armentrout PB (2006) Activation of methane by gold cations: guided ion beam and theoretical studies. J Chem Phys 125(13):188114

    Google Scholar 

  261. Schwarz H (2003) Relativistic effects in gas-phase ion chemistry: an experimentalist’s view. Angew Chem Int Ed 42(37):4442–4454

    Article  CAS  Google Scholar 

  262. Schroeder D, Schwarz H, Hrusak J, Pyykkoe P (1998) Cationic gold(I) complexes of xenon and of ligands containing the donor atoms oxygen, nitrogen, phosphorus, and sulfur. Inorg Chem 37(4):624–632. doi:10.1021/IC970986M

    Article  CAS  Google Scholar 

  263. Neumaier M, Weigend F, Hampe O, Kappes MM (2005) Binding energies of CO on gold cluster cations Aun + (n = 1–65): a radiative association kinetics study. J Chem Phys 122(10):104702

    Google Scholar 

  264. Neumaier M, Weigend F, Hampe O, Kappes MM (2006) Reactions of mixed silver-gold cluster cations AgmAu n + (m + n = 4,5,6) with CO: Radiative association kinetics and density functional theory computations. J Chem Phys 125(10):104308

    Google Scholar 

  265. Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Size-dependent binding energies of methane to small gold clusters. ChemPhysChem 11(7):1570–1577

    Article  CAS  Google Scholar 

  266. Popolan DM, Nössler M, Mitrić R, Bernhardt TM, Bonačić-Koutecký V (2011) Tuning cluster reactivity by charge state and composition: experimental and theoretical investigation of CO binding energies to Ag nAu m +/- (n + m = 3). J Phys Chem A 115(6):951–959

    Article  CAS  Google Scholar 

  267. Popolan DM, Nößler M, Mitrić R, Bernhardt TM, Bonaić-Koutecký V (2010) Composition dependent adsorption of multiple CO molecules on binary silver-gold clusters AgnAum + (n + m = 5): theory and experiment. Phys Chem Chem Phys 12(28):7865–7873

    Article  CAS  Google Scholar 

  268. Bernhardt TM, Hagen J, Lang SM, Popolan DM, Socaciu-Siebert LD, Wöste L (2009) Binding energies of O2 and CO to small gold, silver, and binary silver–gold cluster anions from temperature dependent reaction kinetics measurements. J Phys Chem A 113(12):2724–2733

    Article  CAS  Google Scholar 

  269. Cox DM, Brickman R, Creegan K, Kaldor A (1991) Gold clusters: reactions and deuterium uptake. Z Phys D At Mol Clusters 19(1–4):353–355. doi:10.1007/BF01448327

    Article  CAS  Google Scholar 

  270. Lian L, Hackett PA, Rayner DM (1993) Relativistic effects in reactions of the coinage metal dimers in the gas phase. J Chem Phys 99(4):2583–2590. doi:10.1063.1.4652.1

    Article  CAS  Google Scholar 

  271. Lang SM, Bernhardt TM, Barnett RN, Yoon B, Landman U (2009) Hydrogen-promoted oxygen activation by free gold cluster cations. J Am Chem Soc 131(25):8939–8951. doi:10.1021/ja9022368

    Article  CAS  Google Scholar 

  272. Dietrich G, Luetzenkirchen K, Becker S, Hasse HU, Kluge HJ, Lindinger M, Schweikhard L, Ziegler J, Kuznetsov S (1994) Aun +-induced decomposition of N2O. Ber Bunsen Ges 98(12):1608–1612

    Article  CAS  Google Scholar 

  273. Lee TH, Ervin KM (1994) Reactions of copper group cluster anions with oxygen and carbon monoxide. J Phys Chem 98(40):10023–10031

    Article  CAS  Google Scholar 

  274. Cox DM, Brickman RO, Creegan K, Kaldor A (1991) Studies of the chemical properties of size selected metal clusters: kinetics and saturation. Mater Res Soc Symp Proc (Clusters Cluster-Assem Mater) 206:43–48

    Google Scholar 

  275. Salisbury BE, Wallace WT, Whetten RL (2000) Low-temperature activation of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity. Chem Phys 262(1):131–141. doi:10.1016/S0301-0104(00)00272-X

    Article  CAS  Google Scholar 

  276. Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124(25):7499–7505. doi:10.1021/ja0175439

    Article  CAS  Google Scholar 

  277. Su T, Chesnavich WJ (1982) Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J Chem Phys 76(10):5183–5185. doi:10.1063.1.4428.8

    Article  CAS  Google Scholar 

  278. Wallace WT, Wyrwas RB, Leavitt AJ, Whetten RL (2005) Adsorption of carbon monoxide on smaller gold-cluster anions in an atmospheric-pressure flow-reactor: temperature and humidity dependence. Phys Chem Chem Phys 7(5):930–937. doi:10.1039/b500398a

    Article  CAS  Google Scholar 

  279. Wallace WT, Whetten RL (2001) Metastability of gold-carbonyl cluster complexes, AuN(CO)M. Eur Phys J D 16(1–3):123–126. doi:10.1007/s100530170075

    Article  CAS  Google Scholar 

  280. Wallace WT, Whetten RL (2000) Carbon monoxide adsorption on selected gold clusters. Highly size-dependent activity and saturation compositions. J Phys Chem B 104(47):10964–10968. doi:10.1021/jp002889b

    Article  CAS  Google Scholar 

  281. Lang SM, Bernhardt TM (2009) Cooperative and competitive coadsorption of H2, O2, and N2 on Aux +(x = 3,5). J Chem Phys 131(2):024310/024311–024310/024318. doi:10.1063.1.31683.6

    Article  CAS  Google Scholar 

  282. Koszinowski K, Schroeder D, Schwarz H (2004) C–N coupling of methane and ammonia by bimetallic platinum–gold cluster cations. Organometallics 23(5):1132–1139. doi:10.1021/om0306675

    Article  CAS  Google Scholar 

  283. Höckendorf RF, Cao Y, Beyer MK (2010) Gas-phase ion chemistry of small gold cluster anions. Organometallics 29(13):3001–3006. doi:10.1021/om100228y

    Article  CAS  Google Scholar 

  284. Lang SM, Bernhardt TM (2009) Reactions of small gold cluster cations with propylene, methane, and hydrogen: permissive and competitive coadsorption effects. Eur Phys J D 52(1–3):139–142. doi:10.1140/epjd/e2009-00070-4

    Article  CAS  Google Scholar 

  285. Lang SM, Bernhardt TM (2009) Reactions of free gold cluster cations with H2O, CH3Cl, and mixtures thereof. Int J Mass Spectrom 286(1):39–41. doi:10.1016/j.ijms.2009.06.005

    Article  CAS  Google Scholar 

  286. Popolan DM, Bernhardt TM (2011) Interaction of gold and silver cluster cations with CH3Br: thermal and photoinduced reaction pathways. Eur Phys J D 63(2):251–254. doi:10.1140/epjd/e2010-10588-9

    Article  CAS  Google Scholar 

  287. Popolan DM, Bernhardt TM (2011) Communication: CO oxidation by silver and gold cluster cations: identification of different active oxygen species. J Chem Phys 134(9):091102/091101–091102/091103

    Article  CAS  Google Scholar 

  288. Haekkinen H, Landman U (2001) Gas-phase catalytic oxidation of CO by Au2. J Am Chem Soc 123(39):9704–9705. doi:10.1021/ja0165180

    Article  CAS  Google Scholar 

  289. Lang SM, Bernhardt TM (2011) Methane activation and partial oxidation on free gold and palladium clusters: mechanistic insights into cooperative and highly selective cluster catalysis. Faraday Discuss 152(Gold):337–351. doi:10.1039/c1fd00025j

    Article  CAS  Google Scholar 

  290. Popolan DM, Bernhardt TM (2009) Formation and femtosecond photodissociation of Agn + and Aun + complexes with benzene and carbon monoxide. Chem Phys Lett 470(1–3):44–48

    Article  CAS  Google Scholar 

  291. Robinson PSD, Khairallah GN, da Silva G, Lioe H, O’Hair RAJ (2012) Gold Mediated C–I Bond Activation of Iodobenzene Angew Chem Int Ed 51:3812–3817

    Google Scholar 

  292. Gõmez-Suárez A, Nolan SP (2012) Dinuclear gold catalysis: are two gold centers better than one? Angew Chem Int Ed 51(33):8156–8159

    Article  CAS  Google Scholar 

  293. Raubenheimer HG, Schmidbaur H (2012) Gold chemistry guided by the isolobality concept. Organometallics 31(7):2507–2522

    Article  CAS  Google Scholar 

  294. Hoffmann R (1982) Building bridges between inorganic and organic chemistry. Prix Nobel 173–205

    Google Scholar 

  295. Khairallah GN, O’Hair RAJ, Bruce MI (2006) Gas-phase synthesis and reactivity of binuclear gold hydride cations, (R3PAu)2H+ (R=Me and Ph). Dalton Trans 30:3699–3707

    Article  CAS  Google Scholar 

  296. Robilotto TJ, Bacsa J, Gray TG, Sadighi JP (2012) Synthesis of a trigold monocation: an isolobal analogue of [H3]+. Angew Chem Int Ed 51(48):12077–12080

    Article  CAS  Google Scholar 

  297. Thomson JJ (1913) Bakerian lecture: rays of positive electricity. Proc Royal Soc Lond Ser A 89(607):1–20. doi:10.1098/rspa.1913.0057

    Article  CAS  Google Scholar 

  298. Herbst E, Moller S, Oka T, Watson JKG (eds) (2000) Astronomy, physics and chemistry of H3 +. In: Papers of a Discussion Meeting held 9–10 February 2000. Philos Trans R Soc London Ser A 358(1774)]. vol Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved Royal Society

    Google Scholar 

  299. Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals-characterized intermediates. Angew Chem Int Ed 49(31):5232–5241

    Article  CAS  Google Scholar 

  300. Khairallah GN, O’Hair RAJ (2005) Gas phase synthesis and reactivity of Agn + and Agn-1 H+ cluster cations. Dalton Trans 16:2702–2712

    Article  CAS  Google Scholar 

  301. Blagojevic V, Samad SN, Banu L, Thomas MC, Blanksby SJ, Bohme DK (2011) Mass spectrometric study of the dissociation of Group XI metal complexes with fatty acids and glycerolipids: Ag2H+ and Cu2H+ ion formation in the presence of a double bond. Int J Mass Spectrom 299(2–3):125–130

    Article  CAS  Google Scholar 

  302. Khairallah GN, O’Hair RAJ (2005) Gas-phase synthesis of [Ag4H]+ and its mediation of the C–C coupling of allyl bromide. Angew Chem Int Ed 44(5):728–731. doi:10.1002/anie.200461328

    Article  CAS  Google Scholar 

  303. Wallace WT, Wyrwas RB, Whetten RL, Mitric R, Bonacic-Koutecky V (2003) Oxygen adsorption on hydrated gold cluster anions: experiment and theory. J Am Chem Soc 125(27):8408–8414. doi:10.1021/ja034905z

    Article  CAS  Google Scholar 

  304. Johnson GE, Mitric R, Bonacic-Koutecky V, Castleman AW (2009) Clusters as model systems for investigating nanoscale oxidation catalysis. Chem Phys Lett 475(1–3):1–9. doi:10.1016/j.cplett.2009.04.003

    Article  CAS  Google Scholar 

  305. Kimble ML, Castleman AW Jr, Mitric R, Buergel C, Bonacic-Koutecky V (2004) Reactivity of atomic gold anions toward oxygen and the oxidation of CO: experiment and theory. J Am Chem Soc 126(8):2526–2535. doi:10.1021/ja030544b

    Article  CAS  Google Scholar 

  306. Buergel C, Reilly NM, Johnson GE, Mitric R, Kimble ML, Castleman AW Jr, Bonacic-Koutecky V (2008) Influence of charge state on the mechanism of CO oxidation on gold clusters. J Am Chem Soc 130(5):1694–1698. doi:10.1021/ja0768542

    Article  CAS  Google Scholar 

  307. Kimble ML, Moore NA, Johnson GE, Castleman AW Jr, Burgel C, Mitric R, Bonacic-Koutecky V (2006) Joint experimental and theoretical investigations of the reactivity of Au2On and Au3On (n = 1–5) with carbon monoxide. J Chem Phys 125(20):204311/204311–204311/204314. doi:10.1063.1.23710.2

    Article  CAS  Google Scholar 

  308. Kimble ML, Castleman AW, Buergel C, Bonacic-Koutecky V (2006) Interactions of CO with AunOm (n ≥ 4). Int J Mass Spectrom 254(3):163–167. doi:10.1016/j.ijms.2006.05.015

    Article  CAS  Google Scholar 

  309. Kimble ML, Moore NA, Castleman AW Jr, Buergel C, Mitric R, Bonacic-Koutecky V (2007) Reactivity of anionic gold oxide clusters towards CO: experiment and theory. Eur Phys J D 43(1–3):205–208. doi:10.1140/epjd/e2007-00119-4

    Article  CAS  Google Scholar 

  310. Kimble ML, Castleman AW (2004) Gas-phase studies of AunOm + interacting with carbon monoxide. Int J Mass Spectrom 233(1–3):99–101. doi:10.1016/j.ijms.2003.11.018

    Article  CAS  Google Scholar 

  311. Johnson GE, Reilly NM, Tyo EC, Castleman AW (2008) Gas-phase reactivity of gold oxide cluster cations with CO. J Phys Chem C 112(26):9730–9736. doi:10.1021/jp801514d

    Article  CAS  Google Scholar 

  312. Tyo EC, Castleman AW Jr, Schröder D, Milko P, Roithova J, Ortega JM, Cinellu MA, Cocco F, Minghetti G (2009) Large effect of a small substitution: competition of dehydration with charge retention and coulomb explosion in gaseous [(bipyR)Au(μ-O) 2Au(bipyR)]2+ dications. J Am Chem Soc 131(36):13009–13019

    Article  CAS  Google Scholar 

  313. Butschke B, Schwarz H (2012) “Rollover” cyclometalation – early history, recent developments, mechanistic insights and application aspects. Chem Sci 3(2):308–326. doi:10.1039/c1sc00651g

    Article  CAS  Google Scholar 

  314. Hansmann MM, Rudolph M, Rominger F, Hashmi ASK (2013) Mechanistic switch in dual gold catalysis of diynes: C(sp3)-H activation through bifurcation-vinylidene versus carbene pathways. Angew Chem Int Ed 52(9):2593–2598. doi:10.1002/anie.201208777

    Article  CAS  Google Scholar 

  315. Simonneau A, Jaroschik F, Lesage D, Karanik M, Guillot R, Malacria M, Tabet J-C, Goddard J-P, Fensterbank L, Gandon V, Gimbert Y (2011) Tracking gold acetylides in gold(i)-catalyzed cycloisomerization reactions of enynes. Chem Sci 2(12):2417–2422. doi:10.1039/C1SC00478F

    Article  CAS  Google Scholar 

  316. Roithová J, Janková Š, Jašíková L, Váňa J, Hybelbauerová S (2012) Gold–gold cooperation in the addition of methanol to alkynes. Angew Chem Int Ed 51(33):8378–8382. doi:10.1002/anie.201204003

    Article  CAS  Google Scholar 

  317. Koszinowski K, Schroeder D, Schwarz H (2003) Probing cooperative effects in bimetallic clusters: indications of C–N coupling of CH4 and NH3 mediated by the cluster ion PtAu+ in the gas phase. J Am Chem Soc 125(13):3676–3677. doi:10.1021/ja029791q

    Article  CAS  Google Scholar 

  318. Koszinowski K, Schroder D, Schwarz H (2003) Additivity effects in the reactivities of bimetallic cluster ions PtmAun +. ChemPhysChem 4(11):1233–1237

    Article  CAS  Google Scholar 

  319. Lang SM, Frank A, Bernhardt TM (2013) Composition and size dependent methane dehydrogenation on binary gold-palladium clusters. Int J Mass Spectrom 354–355:365–371. doi:10.1016/j.ijms.2013.07.014

    Article  CAS  Google Scholar 

  320. Fleischer I, Popolan DM, Krstić M, Bonačic-Koutecky V, Bernhardt TM (2013) Composition dependent selectivity in the coadsorption of H2O and CO on pure and binary silver-gold clusters. Chem Phys Lett 565:74–79

    Article  CAS  Google Scholar 

  321. Kappes MM, Staley RH (1981) Gas-phase oxidation catalysis by transition-metal cations. J Am Chem Soc 103(5):1286–1287. doi:10.1021/ja00395a080

    Article  CAS  Google Scholar 

  322. Schlangen M, Schwarz H (2012) Effects of ligands, cluster size, and charge state in gas-phase catalysis: a happy marriage of experimental and computational studies. Catal Lett 142(11):1265–1278

    Article  CAS  Google Scholar 

  323. Waters T, O’Hair RAJ (2005) Contribution to “The Encyclopedia of Mass Spectrometry”. In: Gross ML, Caprioli R (eds in Chief) Fundamentals of and applications to organic (and organometallic) compounds, vol 4. Metal ion complexes: formation and reactivity, topic: “Organometallic Catalysis in the Gas Phase”, Chap 6. (Nibbering, N.M.M. Ed. ISBN: 0-08-043846-6), Elsevier, Amsterdam

    Google Scholar 

  324. Hagen J, Socaciu LD, Elijazyfer M, Heiz U, Bernhardt TM, Woeste L (2002) Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: model complexes for catalytic CO oxidation. Phys Chem Chem Phys 4(10):1707–1709. doi:10.1039/b201236g

    Article  CAS  Google Scholar 

  325. Socaciu LD, Hagen J, Bernhardt TM, Woste L, Heiz U, Hakkinen H, Landman U (2003) Catalytic CO oxidation by free Au2: experiment and theory. J Am Chem Soc 125(34):10437–10445

    Article  CAS  Google Scholar 

  326. Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Methane activation and catalytic ethylene formation on free Au2 +. Angew Chem Int Ed 49(5):980–983. doi:10.1002/anie.200905643

    Article  CAS  Google Scholar 

  327. Lang SM, Bernhardt TM, Barnett RN, Landman U (2011) Temperature-tunable selective methane catalysis on Au2 +: from cryogenic partial oxidation yielding formaldehyde to cold ethylene production. J Phys Chem C 115(14):6788–6795. doi:10.1021/jp200160r

    Article  CAS  Google Scholar 

  328. Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81(7):3322–3330. doi:10.1063.1.4479.4

    Article  CAS  Google Scholar 

  329. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature (London) 318(6042):162–163. doi:10.1038.3181.2.0

    Article  CAS  Google Scholar 

  330. Kraetschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature (London) 347(6291):354–358. doi:10.1038.3473.4.0

    Article  CAS  Google Scholar 

  331. Bates PA, Waters JM (1985) The crystal and molecular structure of dichloro-1,2-bis(diphenylphosphino)ethanedigold(I). Inorg Chim Acta 98(2):125–129

    Article  CAS  Google Scholar 

  332. Brandys MC, Jennings MC, Puddephatt RJ (2000) Luminescent gold(i) macrocycles with diphosphine and 4,4′-bipyridyl ligands. J Chem Soc Dalton Trans 24:4601–4606

    Article  Google Scholar 

  333. Parkins WE (2005) The uranium bomb, the calutron, and the space-charge problem. Phys Today 58(5):45–51. doi:10.1063.1.19957.7

    Article  CAS  Google Scholar 

  334. Cyriac J, Pradeep T, Kang H, Souda R, Cooks RG (2012) Low-energy ionic collisions at molecular solids. Chem Rev (Washington, DC, US) 112(10):5356–5411. doi:10.1021/cr200384k

    Article  CAS  Google Scholar 

  335. Johnson GE, Hu Q, Laskin J (2011) Soft landing of complex molecules on surfaces. Ann Rev Anal Chem 83–104

    Google Scholar 

  336. Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SVNT, Moon D (2013) Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A 31(5):050820/050821–050820/050834. doi:10.1116.1.48184.3

    Article  CAS  Google Scholar 

  337. Thune E, Carpene E, Sauthoff K, Seibt M, Reinke P (2005) Gold nanoclusters on amorphous carbon synthesized by ion-beam deposition. J Appl Phys 98(3):034304/034301–034304/034309. doi:10.1063.1.19859.7

    Article  CAS  Google Scholar 

  338. DiCenzo SB, Berry SD, Hartford EH Jr (1988) Photoelectron spectroscopy of single-size Au clusters collected on a substrate. Phys Rev B 38(12):8465–8468

    Article  Google Scholar 

  339. Perez A, Melinon P, Dupuis V, Jensen P, Prevel B, Tuaillon J, Bardotti L, Martet C, Treilleux M, Broyer M, Pellarin M, Vaille JL, Palpant B, Lerme J (1997) Cluster assembled materials: a novel class of nanostructured solids with original structures and properties. J Phys D Appl Phys 30(5):709–721. doi:10.1088/0022-3727/30/5/003

    Article  CAS  Google Scholar 

  340. Bardotti L, Prevel B, Melinon P, Perez A, Hou Q, Hou M (2000) Deposition of AuN clusters on Au(111) surfaces. II. Experimental results and comparison with simulations. Phys Rev B Condens Matter Mater Phys 62(4):2835–2842

    Article  CAS  Google Scholar 

  341. Tong X, Benz L, Kemper P, Metiu H, Bowers MT, Buratto SK (2005) Intact size-selected Aun clusters on a TiO2(110)-(1 μe 1) surface at room temperature. J Am Chem Soc 127(39):13516–13518. doi:10.1021/ja052778w

    Article  CAS  Google Scholar 

  342. Vajda S, Winans RE, Elam JW, Lee B, Pellin MJ, Seifert S, Tikhonov GY, Tomczyk NA (2006) Supported gold clusters and cluster-based nanomaterials: characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen. Top Catal 39(3–4):161–166. doi:10.1007/s11244-006-0052-3

    Article  CAS  Google Scholar 

  343. DiVece M, Young NP, Li Z, Chen Y, Palmer RE (2006) Co-deposition of atomic clusters of different size and composition. Small 2(11):1270–1272. doi:10.1002/smll.200600065

    Article  CAS  Google Scholar 

  344. Bardotti L, Tournus F, Melinon P, Pellarin M, Broyer M (2011) Mass-selected clusters deposited on graphite. Spontaneous organization controlled by cluster surface reaction. Phys Rev B Condens Matter Mater Phys 83(3):035425/035421–035425/035428. doi:10.1103/PhysRevB.83.035425

    Article  CAS  Google Scholar 

  345. Johnson GE, Priest T, Laskin J (2012) Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions. ACS Nano 6(1):573–582. doi:10.1021/nn2039565

    Article  CAS  Google Scholar 

  346. Johnson GE, Priest T, Laskin J (2012) Coverage-dependent charge reduction of cationic gold clusters on surfaces prepared using soft landing of mass-selected ions. J Phys Chem C 116(47):24977–24986

    Article  CAS  Google Scholar 

  347. Cox DM, Eberhardt W, Fayet P, Fu Z, Kessler B, Sherwood RD, Sondericker D, Kaldor A (1991) Electronic structure of deposited monosized metal-clusters. Z Phys D At Mol Clusters 20(1–4):385–386. doi:10.1007/BF01544017

    Article  CAS  Google Scholar 

  348. Heiz U, Bullock EL (2004) Fundamental aspects of catalysis on supported metal clusters. J Mater Chem 14(4):564–577. doi:10.1039/b313560h

    Article  CAS  Google Scholar 

  349. Sanchez A, Abbet S, Heiz U, Schneider WD, Häkkinen H, Barnett RN, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103(48):9573–9578

    Article  CAS  Google Scholar 

  350. Heiz U, Sanchez A, Abbet S, Schneider WD (2000) Tuning the oxidation of carbon monoxide using nanoassembled model catalysts. Chem Phys 262(1):189–200. doi:10.1016/S0301-0104(00)00268-8

    Article  CAS  Google Scholar 

  351. Lee S, Fan C, Wu T, Anderson SL (2004) CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J Am Chem Soc 126(18):5682–5683. doi:10.1021/ja049436v

    Article  CAS  Google Scholar 

  352. Yoon B, Haekkinen H, Landman U, Woerz AS, Antonietti J-M, Abbet S, Judai K, Heiz U (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science (Washington, DC, U S) 307(5708):403–407. doi:10.1126/science.1104168

    Article  CAS  Google Scholar 

  353. Leung C, Xirouchaki C, Berovic N, Palmer RE (2004) Immobilization of protein molecules by size-selected metal clusters on surfaces. Adv Mater (Weinheim, Ger) 16(3):223–226. doi:10.1002/adma.200305756

    Article  CAS  Google Scholar 

  354. Lim DC, Dietsche R, Bubek M, Ketterer T, Ganteför G, Kim YD (2007) Chemistry of mass-selected Au clusters deposited on sputter-damaged HOPG surfaces: the unique properties of Au8 clusters. Chem Phys Lett 439(4–6):364–368

    Article  CAS  Google Scholar 

  355. Lim DC, Dietsche R, Bubek M, Gantefor G, Kim YD (2006) Oxidation and reduction of mass-selected Au clusters on SiO2/Si. ChemPhysChem 7(9):1909–1911

    Article  CAS  Google Scholar 

  356. Lim DC, Dietsche R, Ganteför G, Kim YD (2008) Chemical properties of size-selected Au clusters treated under ambient conditions. Chem Phys Lett 457(4–6):391–395

    Article  CAS  Google Scholar 

  357. Lee S, Molina LM, Lopez M, Alonso JA, Hammer B, Lee B, Seifert S, Winans RE, Elam JW, Pellin MJ, Vajda S (2009) Selective propene epoxidation on immobilized Au6–10 clusters: the effect of hydrogen and water on activity and selectivity. Angew Chem Int Ed 48(8):1467–1471. doi:10.1002/anie.200804154, S1467/1461-S1467/1462

    Article  CAS  Google Scholar 

  358. Harding C, Habibpour V, Kunz S, Farnbacher AN-S, Heiz U, Yoon B, Landman U (2009) Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition. J Am Chem Soc 131(2):538–548. doi:10.1021/ja804893b

    Article  CAS  Google Scholar 

  359. Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44(1–2):1–49. doi:10.1016/S0167-5729(01)00015-2

    Article  CAS  Google Scholar 

  360. Zhang Y, Hu Q, Paau MC, Xie S, Gao P, Wan C, Choi MMF (2013) Probing histidine-stabilized gold nanoclusters product by high-performance liquid chromatography and mass spectrometry. J Phys Chem C 117(36):18697–18708

    Article  CAS  Google Scholar 

  361. Chen J, Zhang Q-F, Bonaccorso TA, Williard PG, Wang L-S (2014) Controlling gold nanoclusters by diphosphine ligands. J Am Chem Soc 136(1):92–95

    Article  CAS  Google Scholar 

  362. Knoppe S, Buergi T (2013) The fate of Au25(SR)18 clusters upon ligand exchange with binaphthyl-dithiol: interstaple binding vs. decomposition. Phys Chem Chem Phys 15(38):15816–15820

    Article  CAS  Google Scholar 

  363. Johnson GE, Priest T, Laskin J (2013) Synthesis and characterization of gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane. ChemPlusChem 78(9):1033–1039

    Article  CAS  Google Scholar 

  364. Lavenn C, Albrieux F, Tuel A, Demessence A (2014) Synthesis, characterization and optical properties of an amino-functionalized gold thiolate cluster: Au10(SPh-pNH2)10. J Colloid Interface Sci 418:234

    Article  CAS  Google Scholar 

  365. Crasto D, Dass A (2014) Green gold: Au30(S-t-C4H9)18. J Phys Chem C 117(42):22094–22097

    Article  CAS  Google Scholar 

  366. Havel J, Pena-Mendez EM, Amato F, Panyala NR, Bursikova V (2014) Laser ablation synthesis of new gold carbides. From gold-diamond nano-composite as a precursor to gold-doped diamonds. Time-of-flight mass spectrometric study. Rapid Commun Mass Spectrom 28(3):297–304

    Article  CAS  Google Scholar 

  367. Prokes L, Pena-Mendez EM, Conde JE, Panyala NR, Alberti M, Havel J (2014) Laser ablation synthesis of new gold arsenides using nano-gold and arsenic as precursors. Laser desorption ionisation time-of-flight mass spectrometry and spectrophotometry. Rapid Commun Mass Spectrom 28(6):577–586

    Article  CAS  Google Scholar 

  368. Baksi A, Pradeep T (2013) Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold. Nanoscale 5(24):12245–12254

    Article  CAS  Google Scholar 

  369. Shao N, Huang W, Mei W, Wang L-S, Wu Q, Zeng XC (2014) Structural evolution of medium-sized gold clusters Au n (n = 36, 37, 38): appearance of bulk-like FCC fragment. J Phys Chem C. doi:10.1021/jp500582t

    Google Scholar 

  370. Jasikova L, Roithova J (2013) Interaction of gold acetylides with Gold(I) or Silver(I) cations. Organometallics 32(23):7025–7033

    Article  CAS  Google Scholar 

  371. Lang SM, Frank A, Bernhardt TM (2013) Comparison of methane activation and catalytic ethylene formation on free gold and palladium dimer cations: product binding determines the catalytic turnover. Cat Sci Tech 3(11):2926–2933

    Article  CAS  Google Scholar 

  372. Pettibone JM, Osborn WA, Rykaczewski K, Talin AA, Bonevich JE, Hudgens JW, Allendorf MD (2013) Surface mediated assembly of small, metastable gold nanoclusters. Nanoscale 5(14):6558–6566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ARC for generously funding our work on coinage metals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. J. O’Hair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zavras, A., Khairallah, G.N., O’Hair, R.A.J. (2014). Gas Phase Formation, Structure and Reactivity of Gold Cluster Ions. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles II. Structure and Bonding, vol 162. Springer, Cham. https://doi.org/10.1007/430_2014_140

Download citation

Publish with us

Policies and ethics