Skip to main content
Log in

Resolving the problem of chromatographic overlap by 3D cross correlation (3DCC) processing of LC, MS and NMR data for characterization of complex glycan mixtures

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chromatographic overlap is a common problem in the analysis of complex mixtures. As a result, it is not possible to identify the components because each resulting NMR or MS spectrum contains multiple components. We introduce three-dimensional cross correlation (3DCC) that dissects NMR spectra of a mixture into spectra of the individual components without actually separating them. Correlation of peaks from MS and NMR profiles along a common LC time domain yields 3DCC NMR spectra of pure components correlated with a mass and a retention time. The method requires an LC run followed by fractionation and recording of MS and NMR spectra. The method is applicable to mixtures of any classes of molecules. Here, we demonstrate its application to a mixture of complex glycans obtained from a glycoprotein. Fourteen glycans eluting within only 3 min showed heavy overlap in the chromatographic run. 3DCC allowed their direct characterization without separation. Some of these structures from the glycoprotein bovine fibrinogen had not previously been described. The 3DCC procedure has been implemented in standard software. Actually, 3DCC can be used for any combination of separation techniques, like LC or GC, combined with two characterization methods like UV, IR, Raman, NMR or MS.

LC runs of complex mixtures often result in overlap of several analytes and prohibit thereby characterization by NMR. The new 3DCC method allows extraction of pure NMR spectra directly from mixtures by correlating NMR and MS data from an LC run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

dHex:

Deoxyhexose

EDC:

Extracted delta chromatogram

EIC:

Extracted ion chromatogram

Fuc:

Fucose

Gal:

Galactose

Hex:

Hexose

GlcNAc:

N-Acetylglucosamine

HexNAc:

N-Acetylhexosamine

Man:

Mannose

PGC:

Porous graphitized carbon

3DCC:

Three-dimensional cross correlation

3DCCL :

Three-dimensional cross correlation using least squares minimization

3DCCC :

Three-dimensional cross correlation using Pearson coefficients

TIC:

Total ion current

References

  1. Carr PW, Wang X, Stoll DR (2009) Effect of pressure, particle size, and time on optimizing performance in liquid chromatography. Anal Chem 81(13):5342–5353

    Article  CAS  Google Scholar 

  2. Snyder LR, Kirkland JJ (1979) Introduction to modern liquid chromatography. Wiley, New York

    Google Scholar 

  3. Dell A, Morris HR (2001) Glycoprotein structure determination mass spectrometry. Science 291(5512):2351–2356

    Article  CAS  Google Scholar 

  4. Fellenberg M, Coksezen A, Meyer B (2010) Characterization of picomole amounts of oligosaccharides from glycoproteins by 1H NMR spectroscopy. Angew Chem Int Ed Engl 49(14):2630–2633

    Article  CAS  Google Scholar 

  5. Meyer B, Hansen T, Nute D, Albersheim P, Darvill A, York W, Sellers J (1991) Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks. Science 251(4993):542–544

    Article  CAS  Google Scholar 

  6. Vliegenthart JFG, Dorland L, van Halbeek H (1983) High-resolution, 1H nuclear magnetic-resonance spectroscopy as a tool in the structural-analysis of carbohydrates related to glycoproteins. Adv Carbohydr Chem Biochem 41:209–374

    Article  CAS  Google Scholar 

  7. Godejohann M (2010) LC-NMR/MS and LC-SPE-NMR/MS: technical realization, possibilities and limitations. Planta Med 76(12):1175–1175

    Article  Google Scholar 

  8. Spraul M, Freund AS, Nast RE, Withers RS, Maas WE, Corcoran O (2003) Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: application to the analysis of acetaminophen metabolites in urine. Anal Chem 75(6):1536–1541

    Article  CAS  Google Scholar 

  9. Cloarec O, Campbell A, Tseng LH, Braumann U, Spraul M, Scarfe G, Weaver R, Nicholson JK (2007) Virtual chromatographic resolution enhancement in cryoflow LC-NMR experiments via statistical total correlation spectroscopy. Anal Chem 79(9):3304–3311

    Article  CAS  Google Scholar 

  10. Crockford DJ, Holmes E, Lindon JC, Plumb RS, Zirah S, Bruce SJ, Rainville P, Stumpf CL, Nicholson JK (2006) Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 78(2):363–371

    Article  CAS  Google Scholar 

  11. Dai D, He J, Sun R, Zhang R, Aisa HA, Abliz Z (2009) Nuclear magnetic resonance and liquid chromatography-mass spectrometry combined with an incompleted separation strategy for identifying the natural products in crude extract. Anal Chim Acta 632(2):221–228

    Article  CAS  Google Scholar 

  12. Varki A (1993) Biological roles of oligosaccharides—all of the theories are correct. Glycobiology 3(2):97–130

    Article  CAS  Google Scholar 

  13. Berger EG, Buddecke E, Kamerling JP, Kobata A, Paulson JC, Vliegenthart JFG (1982) Structure, biosynthesis and functions of glycoprotein glycans. Experientia 38(10):1129–1162

    Article  CAS  Google Scholar 

  14. Wilhelm D, Behnken HN, Meyer B (2012) Glycosylation assists binding of HIV protein gp120 to human CD4 receptor. ChemBioChem 13(4):524–527

    Article  CAS  Google Scholar 

  15. Kötzler MP, Blank S, Behnken HN, Alpers D, Bantleon FI, Spillner E, Meyer B (2012) Formation of the immunogenic alpha1,3-fucose epitope: elucidation of substrate specificity and of enzyme mechanism of core fucosyltransferase A. Insect Biochem Mol Biol 42(2):116–125

    Article  Google Scholar 

  16. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3(8):1894–1904

    Article  CAS  Google Scholar 

  17. Marchi R, Arocha-Piñango CL, Nagy H, Matsuda M, Weisel JW (2004) The effects of additional carbohydrate in the coiled-coil region of fibrinogen on polymerization and clot structure and properties: characterization of the homozygous and heterozygous forms of fibrinogen Lima (Aα Arg141 → Ser with extra glycosylation). J Thromb Haemost 2(6):940–948

    Article  CAS  Google Scholar 

  18. Ridgway HJ, Brennan SO, Loreth RM, George PM (1997) Fibrinogen Kaiserslautern (gamma 380 Lys to Asn): a new glycosylated fibrinogen variant with delayed polymerization. Brit J Haematol 99(3):562–569

    Article  CAS  Google Scholar 

  19. Ruhaak LR, Deelder AM, Wuhrer M (2009) Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem 394(1):163–174

    Article  CAS  Google Scholar 

  20. Koizumi K, Okada Y, Fukuda M (1991) High-performance liquid-chromatography of monosaccharides and oligosaccharides on a graphitized carbon column. Carbohydr Res 215(1):67–80

    Article  CAS  Google Scholar 

  21. van Kuik JA, Hard K, Vliegenthart JFG (1992) A 1H-NMR database computer-program for the analysis of the primary structure of complex carbohydrates. Carbohydr Res 235:53–68

    Article  Google Scholar 

  22. van Kuik JA, Vliegenthart JFG (1992) Databases of complex carbohydrates. Trends Biotechnol 10(6):182–185

    Article  Google Scholar 

  23. Ranzinger R, Herget S, von der Lieth CW, Frank M (2011) GlycomeDB—a unified database for carbohydrate structures. Nucleic Acids Res 39:D373–D376

    Article  Google Scholar 

  24. Oyelaran O, Gildersleeve JC (2009) Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol 13(4):406–413

    Article  CAS  Google Scholar 

  25. Platts-Mills TAE, Chung CH, Mirakhur B, Chan E, Le Q, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou QW, Gold D, Hatley T, Hicklin DJ (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. New Engl J Med 358(11):1109–1117

    Article  Google Scholar 

  26. Thall A, Galili U (1990) Distribution of Gal α1-3Galβ1-4GlcNAc-R residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay. Biochemistry 29(16):3959–3965

    Article  CAS  Google Scholar 

  27. Tamura T, Wadhwa MS, Rice KG (1994) Reducing-end modification of N-linked oligosaccharides with tyrosine. Anal Biochem 216(2):335–344

    Article  CAS  Google Scholar 

  28. Rice KG, DaSilva MLC (1996) Preparative purification of tyrosinamide N-linked oligosaccharides. J Chromatogr A 720(1–2):235–249

    CAS  Google Scholar 

  29. Muddiman DC, Bereman MS, Williams TI (2009) Development of a nanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epithelial ovarian cancer patients. Anal Chem 81(3):1130–1136

    Article  Google Scholar 

  30. Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson A 112(2):275–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the late Dr. Stephan Franke for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Meyer.

Additional information

Henning N. Behnken and Meike Fellenberg contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnken, H.N., Fellenberg, M., Koetzler, M.P. et al. Resolving the problem of chromatographic overlap by 3D cross correlation (3DCC) processing of LC, MS and NMR data for characterization of complex glycan mixtures. Anal Bioanal Chem 404, 1427–1437 (2012). https://doi.org/10.1007/s00216-012-6241-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6241-y

Keywords

Navigation