Skip to main content
Log in

Removal of sulfonamide antibiotics upon conventional activated sludge and advanced membrane bioreactor treatment

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work reports the removal efficiencies of nine sulfonamides (SAs) and one of their acetylated metabolites during conventional activated sludge (CAS) and membrane bioreactor (MBR) treatments. Two different types of membranes were studied, hollow-fiber membranes and flat-sheet membranes, in two separate pilot plants operating in parallel to a full-scale CAS treatment. A total of 48 water samples and 16 sewage sludge samples were analyzed by liquid chromatography–tandem mass spectrometry. We obtained 100 % elimination in the MBR effluents for three SAs (sulfadiazine, sulfadimethoxine, and sulfamethoxypyridazine) and the metabolite. For the rest of the SAs, the removal efficiencies during CAS and MBR treatments were similar and usually below 55 %. Sulfamethizole was the most recalcitrant SA, exhibiting negative removal efficiencies in all the treatments investigated. The concentrations of SAs in the different sewage sludge types were also calculated and ranged from 0.01 to 11 ng g-1. Furthermore, adsorption and biodegradation of SAs in activated sludge were investigated in two sets of batch reactors, which were spiked at high and low concentration (1,000 and 50 ng mL-1, respectively). All SAs followed a similar trend and, with the exception of sulfathiazole, were not fully eliminated after 25 days of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sipma J, Osuna B, Collado N, Monclús H, Ferrero G, Comas J, Rodriguez-Roda I (2010) Desalination 250(2):653–659

    Article  CAS  Google Scholar 

  2. Heuer H, Schmitt H, Smalla K (2011) Curr Opin Microbiol 14(3):236–243

    Article  CAS  Google Scholar 

  3. Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Sci Total Environ 372(2–3):361–371

    Article  Google Scholar 

  4. Göbel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Environ Sci Technol 39(11):3981–3989

    Article  Google Scholar 

  5. García-Galán MJ, Díaz-Cruz MS, Barceló D (2010) Talanta 81(1–2):355–366

    Article  Google Scholar 

  6. Reemtsma T, Weiss S, Mueller J, Petrovic M, González S, Barcelo D, Ventura F, Knepper TP (2006) Environ Sci Technol 40(17):5451–5458

    Article  CAS  Google Scholar 

  7. García-Galán MJ, Díaz-Cruz MS, Barceló D (2011) Environ Int 37(2):462–473

    Article  Google Scholar 

  8. Gros M, Petrovic M, Ginebreda A, Barceló D (2010) Environ Int 36(1):15–26

    Article  CAS  Google Scholar 

  9. Lapen DR, Topp E, Metcalfe CD, Li H, Edwards M, Gottschall N, Bolton P, Curnoe W, Payne M, Beck A (2008) Sci Total Environ 399(1–3):50–65

    Article  CAS  Google Scholar 

  10. Sabourin L, Beck A, Duenk PW, Kleywegt S, Lapen DR, Li H, Metcalfe CD, Payne M, Topp E (2009) Sci Total Environ 407(16):4596–4604

    Article  CAS  Google Scholar 

  11. Lesjean B, Rosenberger S, Schrotter J-C, Recherche A (2004) Membr Technol 2004(8):5–10

    Article  Google Scholar 

  12. Bernhard M, Müller J, Knepper TP (2006) Water Res 40(18):3419–3428

    Article  CAS  Google Scholar 

  13. González S, Petrovic M, Barceló D (2008) J Hydrol 356(1–2):46–55

    Article  Google Scholar 

  14. Cirja M, Ivashechkin P, Schäffer A, Corvini P (2008) Rev Environ Sci Biotechnol 7(1):61–78

    Article  CAS  Google Scholar 

  15. Díaz-Cruz MS, García-Galán MJ, Barceló D (2008) J Chromatogr A 1193(1–2):50–59

    Google Scholar 

  16. García-Galán MJ, Rodríguez-Rodríguez CE, Vicent T, Caminal G, Díaz-Cruz MS, Barceló D (2011) Sci Total Environ 409(24):5505–5512

    Article  Google Scholar 

  17. OECD (1992) OECD guidelines for the testing of chemicals section 3: degradation and accumulation. OECD Publishing, Paris. doi:10.1787/9789264070387-en

    Google Scholar 

  18. Li B, Zhang T (2010) Environ Sci Technol 44(44):3468–3473

    Article  CAS  Google Scholar 

  19. Pérez S, Eichhorn P, Aga DS (2005) Environ Toxicol Chem 24(6):1361–136720

    Article  Google Scholar 

  20. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) J Hazard Mater 122(3):259–265

    Article  CAS  Google Scholar 

  21. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) Water Res 38(19):4075–4084

    Article  CAS  Google Scholar 

  22. Tambosi JL, de Sena RF, Favier M, Gebhardt W, Jose HJ, Schroder HF, Moreira R (2010) Desalination 261(1–2):148–156. doi:10.1016/j.desal.2010.05.014

    Article  CAS  Google Scholar 

  23. Radjenovic J, Petrovic M, Barceló D (2007) Anal Bioanal Chem 387:1365–1377

    Article  CAS  Google Scholar 

  24. Radjenovic J, Petrovic M, Barceló D (2009) Water Res 43(3):831–841

    Article  CAS  Google Scholar 

  25. Sahar E, Ernst M, Godehardt M, Hein A, Herr J, Kazner C, Melin T, Cikurel H, Aharoni A, Messalem R, Brenner A, Jekel M (2011) Water Sci Technol 63(4):733–740

    Article  CAS  Google Scholar 

  26. Garcia-Galan MJ, Frömel T, Müller J, Peschka M, Knepper T, Díaz-Cruz MS, Barceló D (2012) Anal Bioanal Chem 402(9):2885–2896. doi:10.1007/s00216-012-5751-y

    Article  CAS  Google Scholar 

  27. Senta I, Matosic M, Jakopovic HK, Terzic S, Curko J, Mijatovic I, Ahel M (2011) J Hazard Mater 192(1):319–328

    CAS  Google Scholar 

  28. Cai-Ming T, Qiu-Xin H, Yi-Yi Y, Xian-Zhi P (2009) Chin J Anal Chem 37(8):1119–1124

    Article  Google Scholar 

  29. Lillenberg M, Yurchenko S, Kipper K, Herodes K, Pihl V, Lõhmus R, Ivask M, Kuu A, Kutti S, Litvin SV, Nei L (2010) Int J Environ Sci Technol 7(2):307–312

    CAS  Google Scholar 

  30. Jelic A, Petrovic M, Barceló D (2009) Talanta 80(1):363–371

    Article  CAS  Google Scholar 

  31. Yang S-F, Lin C-F, Yu-Chen Lin A, Andy Hong P-K (2011) Water Res 45(11):3389–3397

    Article  CAS  Google Scholar 

  32. Bialk HM, Simpson AJ, Pedersen JA (2005) Environ Sci Technol 39(12):4463–4473

    Article  CAS  Google Scholar 

  33. Ingerslev F, Halling-Sørensen B (2000) Environ Toxicol Chem 19(10):2467–2473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and Innovation through the projects CEMAGUA (CGL2007-64551/HID) and SCARCE (Consolider Ingenio 2010 CSD2009-00065). The authors would like to thank the staff of the Terrasa WWTP for their help throughout the sampling campaign, and A. Navarro for her kind assistance. M.J.G. acknowledges AGAUR (Generalitat de Catalunya, Spain) for economic support through an FI predoctoral grant. Prof. Barcelo acknowledges King Saud University (Riyadh, Saudi Arabia) for his contract position as Visiting Profesor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Silvia Díaz-Cruz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Galán, M.J., Díaz-Cruz, M.S. & Barceló, D. Removal of sulfonamide antibiotics upon conventional activated sludge and advanced membrane bioreactor treatment. Anal Bioanal Chem 404, 1505–1515 (2012). https://doi.org/10.1007/s00216-012-6239-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6239-5

Keywords

Navigation