Skip to main content
Log in

Vanadium bromoperoxidase-coupled fluorescent assay for flow cytometry sorting of glucose oxidase gene libraries in double emulsions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A Vanadium bromoPeroxidase-coupled fluorescent assay (ViPer) for ultrahigh-throughput screening of glucose oxidase (GOx) gene libraries employing double emulsions and flow cytometry was developed. The assay is based on detection of the product of a GOx reaction, hydrogen peroxide, that is first converted to a hypobromide by vanadium bromoperoxidase in the presence of sodium bromide. The hypobromide is afterwards detected in a reaction with a fluorogenic probe, 3-carboxy-7-(4′-aminophenoxy)-coumarine, where fluorescent 3-carboxy-coumarine is released. The ViPer screening system is three times more sensitive than a horseradish peroxidase coupled detection system and more resistant to bleaching of fluorescence in excess of peroxide. Using the ViPer screening system a high epPCR gene library containing 100,000 different GOx variants was screened for active clones in less than 1 h by flow cytometry. A library containing 0.15 % of yeast cells expressing active enzyme variants and with an average GOx activity in the liquid culture of 0.47 U/mL, after one round of sorting, had 28.12 % of the yeast cells expressing the active GOx (an enrichment factor of 200) and 26.8 U/mL of the GOx activity in the liquid culture (an enrichment factor of 57). The developed screening system could be adapted and used in a directed evolution of GOx and other hydrogen peroxide-producing enzymes (oxidases) and glycosidases if coupled with a carbohydrate oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matsuura T, Yomo T (2006) In vitro evolution of proteins. J Biosci Bioeng 101(6):449–456

    Article  CAS  Google Scholar 

  2. Tee KL, Schwaneberg U (2007) Directed evolution of oxygenases: screening systems, success stories and challenges. Comb Chem High Throughput Screen 10(3):197–217

    Article  CAS  Google Scholar 

  3. Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci U S A 105(46):17694–17699

    Article  CAS  Google Scholar 

  4. Lipovsek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM, Tidor B, Wittrup KD (2007) Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 14(10):1176–1185

    Article  CAS  Google Scholar 

  5. Becker S, Michalczyk A, Wilhelm S, Jaeger KE, Kolmar H (2007) Ultrahigh-throughput screening to identify E. coli cells expressing functionally active enzymes on their surface. ChemBioChem 8(8):943–949

    Article  CAS  Google Scholar 

  6. Taly V, Kelly BT, Griffiths AD (2007) Droplets as microreactors for high-throughput biology. ChemBioChem 8(3):263–272

    Article  CAS  Google Scholar 

  7. Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005) High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem Biol 12(12):1281–1289

    Article  CAS  Google Scholar 

  8. Mastrobattista E, Taly V, Chanudet E, Treacy P, Kelly BT, Griffiths AD (2005) High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 12(12):1291–1300

    Article  CAS  Google Scholar 

  9. Bershtein S, Tawfik DS (2008) Advances in laboratory evolution of enzymes. Curr Opin Chem Biol 12(2):151–158

    Article  CAS  Google Scholar 

  10. Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161(1–8):301–312. doi:10.1007/s12010-009-8794-6

    Article  CAS  Google Scholar 

  11. Watt BE, Proudfoot AT, Vale JA (2004) Hydrogen peroxide poisoning. Toxicol Rev 23(1):51–57

    Article  CAS  Google Scholar 

  12. Kirstein D, Kuhn W (1981) Glucose-oxidase—properties and application in the food-industry. Lebensmittel Industrie 28(5):205–208

    CAS  Google Scholar 

  13. Pilone MS, Pollegioni L (2002) d-amino acid oxidase as an industrial biocatalyst. Biocatal Biotransform 20(3):145–159

    Article  CAS  Google Scholar 

  14. MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 72(5):169–195

    Article  CAS  Google Scholar 

  15. Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. Irbm 29(2–3):171–180

    Article  Google Scholar 

  16. Liu Q, Xu XH, Ren GL, Wang W (2006) Enzymatic biofuel cells. Prog Chem 18(11):1530–1537

    CAS  Google Scholar 

  17. Prodanovic R, Ostafe R, Scacioc A, Schwaneberg U (2011) Ultrahigh throughput screening system for directed glucose oxidase evolution in yeast cells. Comb Chem High Throughput Screen 14(1):55–60

    CAS  Google Scholar 

  18. Nohta H, Watanabe T, Nagaoka H, Ohkura Y (1991) Assay for peroxidase using 1,2-diarylethylenediamines and catechol compounds as fluorogenic substrates. Anal Sci 7(3):437–441

    Article  CAS  Google Scholar 

  19. Pyare L K, San Jose, Chiu C Chang, Edwin F Ullman (1982) Method for the determination of peroxidase using fluorogenic substrates. United States Patent 4857455

  20. Zhu ZW, Momeu C, Zakhartsev M, Schwaneberg U (2006) Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosens Bioelectron 21(11):2046–2051

    Article  CAS  Google Scholar 

  21. Sheffield DJ, Harry T, Smith AJ, Rogers LJ (1992) Purification and characterization of the vanadium bromoperoxidase from the macroalga Corallina officinalis. Phytochemistry 32(1):21–26. doi:10.1016/0031-9422(92)80099-z

    Article  CAS  Google Scholar 

  22. Butler A (1998) Vanadium haloperoxidases. Curr Opin Chem Biol 2(2):279–285

    Article  CAS  Google Scholar 

  23. Pyare L. Khanna SJCCC, Santa Clara; Edwin F. Ullman, Atherton, California (1982) Method for the determination of peroxidase using fluorogenic substrates. USA Patent

  24. Agrawal A, Tratnyek PG (1996) Reduction of nitro aromatic compounds by zero-valent iron metal. Environ Sci Technol 30(1):153–160

    Article  CAS  Google Scholar 

  25. Chilvers KF, Perry JD, James AL, Reed RH (2001) Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial beta-galactosidase. J Appl Microbiol 91(6):1118–1130

    Article  CAS  Google Scholar 

  26. Keston AS, Brandt R (1965) Fluorometric analysis of ultramicro quantities of hydrogen peroxide. Analytical Biochemistry 11 (1):1-&

    Google Scholar 

  27. Maeda H, Futkuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y, Yoshida K, Hirata K, Miyamoto K (2004) Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew Chem Int Ed 43(18):2389–2391

    Article  CAS  Google Scholar 

  28. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34

    Article  CAS  Google Scholar 

  29. Frederick KR, Tung J, Emerick RS, Masiarz FR, Chamberlain SH, Vasavada A, Rosenberg S, Chakraborty S, Schopter LM, Massey V (1990) Glucose-oxidase from Aspergillus niger—cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. J Biol Chem 265(7):3793–3802

    CAS  Google Scholar 

  30. Tu R, Martinez R, Prodanovic R, Klein M, Schwaneberg U (2011) A flow cytometry-based screening system for directed evolution of proteases. J Biomol Screen 16(3):285–294. doi:1087057110396361

    Article  CAS  Google Scholar 

  31. Bernath K, Hai M, Mastrobattista E, Griffiths AD, Magdassi S, Tawfik DS (2004) In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting. Anal Biochem 325(1):151–157

    Article  CAS  Google Scholar 

  32. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278(5):3170–3175

    Article  CAS  Google Scholar 

  33. Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27(7–8):873–881

    Article  CAS  Google Scholar 

  34. Goncalves T, Loureirodias MC (1994) Aspects of glucose-uptake in Saccharomyces cerevisiae. J Bacteriol 176(5):1511–1513

    CAS  Google Scholar 

  35. Miller RW, Sirois JC, Morita H (1975) Reaction of coumarins with horseradish-peroxidase. Plant Physiol 55(1):35–41

    Article  CAS  Google Scholar 

  36. Soh N (2006) Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem 386(3):532–543

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the BMBF BiochancePlus program and the BRAIN AG company (Dr. Jürgen Eck & Dr. Frank Niehaus) for funding. Dr. Radivoje Prodanovic thanks furthermore the Alexander von Humboldt foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radivoje Prodanovic or Ulrich Schwaneberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prodanovic, R., Ostafe, R., Blanusa, M. et al. Vanadium bromoperoxidase-coupled fluorescent assay for flow cytometry sorting of glucose oxidase gene libraries in double emulsions. Anal Bioanal Chem 404, 1439–1447 (2012). https://doi.org/10.1007/s00216-012-6234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6234-x

Keywords

Navigation