Skip to main content
Log in

Filter-free integrated sensor array based on luminescence and absorbance measurements using ring-shaped organic photodiodes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optical waveguiding sensor array featuring monolithically integrated organic photodiodes as integrated photo-detector, which simplifies the readout system by minimizing the required parts, is presented. The necessity of any optical filters becomes redundant due to the proposed platform geometry, which discriminates between excitation light and sensing signal. The sensor array is capable of measuring luminescence or absorption, and both sensing geometries are based on the identical substrate. It is demonstrated that background light is virtually non-existent. All sensing and waveguide layers, as well as in- and out-coupling elements are assembled by conventional screen-printing techniques. Organic photodiodes are integrated by layer-by-layer vacuum deposition onto glass or common polymer foils. The universal and simple applicability of this sensor chip is demonstrated by sensing schemes for four different analytes. Relative humidity, oxygen, and carbon dioxide are measured in gas phase using luminescence-based sensor schemes; the latter two analytes are also measured by absorbance-based sensor schemes. Furthermore, oxygen and pH in aqueous media were enabled. The consistency of calibration characteristics extending over different sensor chips is verified.

Integrated fluorescence (left) and absorbance (right) based sensor waveguide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669

    Article  CAS  Google Scholar 

  2. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  3. Schmidt O, Bassler M, Kiesel P et al (2007) Fluorescence spectrometer-on-a-fluidic-chip. Lab Chip 7:626–629

    Article  CAS  Google Scholar 

  4. Chediak JA, Luo Z, Seo J et al (2004) Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems. Sens Actuators A 111:1–7

    Article  Google Scholar 

  5. Daw R, Finkelstein J (2006) Lab on a chip. Nature 442:367–367

    Article  CAS  Google Scholar 

  6. Verpoorte E (2003) Focus Lab Chip 3:42N–52N

    Article  CAS  Google Scholar 

  7. Mogensen KB, Klank H, Kutter JP (2004) Recent developments in detection for microfluidic systems. Electrophoresis 25:3498–3512

    Article  CAS  Google Scholar 

  8. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723

    Article  CAS  Google Scholar 

  9. Song QL, Li FY, Yang H et al (2005) Small-molecule organic solar cells with improved stability. Chem Phys Lett 416:42–46

    Article  CAS  Google Scholar 

  10. Lamprecht B, Thünauer R, Köstler S et al (2008) Spectrally selective organic photodiodes. Phys Status Solidi RRL 2:178–180

    Article  CAS  Google Scholar 

  11. Lamprecht B, Thünauer R, Ostermann M et al (2005) Organic photodiodes on newspaper. Phys Status Solidi A 202:R50–R52

    Article  CAS  Google Scholar 

  12. Savvate’ev V, Chen-Esterlit Z, Aylott JW et al (2002) Integrated organic light-emitting device/fluorescence-based chemical sensors. Appl Phys Lett 81:4652–4654

    Article  Google Scholar 

  13. Qiu Y, Yao B, Luo G et al (2005) A microfluidic device using a green organic light emitting diode as an integrated excitation source. Lab Chip 5:1041–1047

    Article  Google Scholar 

  14. Pais A, Banerjee A, Klotzkin D, Papautsky I (2008) High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip 8:794–800

    Article  CAS  Google Scholar 

  15. Ryu G, Huang J, Hofmann O et al (2011) Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip. Lab Chip 11:1664–1670

    Article  CAS  Google Scholar 

  16. Novak L, Neuzil P, Pipper J et al (2007) An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 7:27–29

    Article  CAS  Google Scholar 

  17. Shinar J, Shinar R (2008) Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J Phys D 41:133001

    Article  Google Scholar 

  18. Borisov S, Krause C, Arain S, Wolfbeis OS (2006) Composite material for simultaneous and contactless luminescent sensing and imaging of oxygen and carbon dioxide. Adv Mater 18:1511–1516

    Article  CAS  Google Scholar 

  19. Schröder CR, Klimant I (2005) The influence of the lipophilic base in solid state optical pCO2 sensors. Sens Actuators B 107:572–579

    Article  Google Scholar 

  20. Lamprecht B, Abel T, Kraker E et al (2010) Integrated fluorescence sensor based on ring–shaped organic photodiodes. Phys Status Solidi RRL 4:157–159

    Article  CAS  Google Scholar 

  21. Lamprecht B, Kraker E, Sagmeister M et al (2011) Integrated waveguide sensor utilizing organic photodiodes. Phys Status Solidi RRL 5:344–346

    Article  CAS  Google Scholar 

  22. Tang CW (1986) Two–layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Article  CAS  Google Scholar 

  23. Lee SK, Okura I (1997) Photostable optical oxygen sensing material: platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polystyrene. Anal Commun 34:185–188

    Article  CAS  Google Scholar 

  24. Douglas P, Eaton K (2002) Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films. Sens Actuators B 82:200–208

    Article  Google Scholar 

  25. Mayr T, Borisov SM, Abel T et al (2009) Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors. Anal Chem 81:6541–6545

    Article  CAS  Google Scholar 

  26. Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79:7501–7509

    Article  CAS  Google Scholar 

  27. Mills A, Eaton K (2000) Optical sensors for carbon dioxide: an overview of sensing strategies past and present. Quim Anal 19:75–86

    CAS  Google Scholar 

  28. Neurauter G, Klimant I, Wolfbeis OS (2000) Fiber-optic microsensor for high resolution pCO2 sensing in marine environment. Fresenius J Anal Chem 366:481–487

    Article  CAS  Google Scholar 

  29. Borisov SM, Herrod DL, Klimant I (2009) Fluorescent poly(styrene-block-vinylpyrrolidone) nanobeads for optical sensing of pH. Sens Actuators B 139:52–58

    Article  Google Scholar 

  30. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55–75

    Article  Google Scholar 

  31. Sipior J, Bambot S, Romauld M et al (1995) A lifetime-based optical CO2 gas sensor with blue or red excitation and stokes or anti-stokes detection. Anal Biochem 227:309–318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Mayr.

Additional information

Published in the special paper collection Optical Biochemical and Chemical Sensors with guest editor Laura M. Lechuga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 14240 kb)

ESM 2

(PDF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, T., Sagmeister, M., Lamprecht, B. et al. Filter-free integrated sensor array based on luminescence and absorbance measurements using ring-shaped organic photodiodes. Anal Bioanal Chem 404, 2841–2849 (2012). https://doi.org/10.1007/s00216-012-6175-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6175-4

Keywords

Navigation