Skip to main content

Advertisement

Log in

Synthesis of molecularly imprinted polymers via ring-opening metathesis polymerization for solid-phase extraction of bisphenol A

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of molecularly imprinted polymers (MIPs) prepared by ring-opening metathesis polymerization (ROMP) for bisphenol A (BPA) was reported in this article. The resulting MIPs have high imprinting and adsorption capacities, and can be used for separation and determination of BPA in environmental water samples. The successful application of ROMP in the molecular imprinting field is described here. For the first time, two cross-linkers (dicyclopentadiene and 2,5-norbornadiene) and two Grubbs catalysts (first and second generation) were investigated to compare their effects on the binding performance of MIPs. The ROMP technique is able to create the imprinted polymers within 1 h under mild conditions. Furthermore, it can provide MIPs with obvious imprinting effects towards the template, very fast template rebinding kinetics, high binding capacity and appreciable selectivity over structurally related compounds. The adsorption process for MIPs in this study can be completed within 45 min, which is much faster than that of bulk MIPs synthesized by traditional free-radical polymerization. The resulting imprinting polymer was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from diluted aqueous samples. The optimized extraction protocol resulted in a reliable MISPE method suitable for selective extraction and preconcentration of BPA from tap water, human urine and liquid milk samples. This article demonstrates the practical feasibility of the MIPs prepared via ROMP as solid-phase extraction materials.

Synthesis of biaphenol A-imprinted polymer via Ringopening metathesis polymerization (ROMP)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haupt K (2003) Anal Chem 75:376A–383A

    Article  CAS  Google Scholar 

  2. Wulff G (2002) Chem Rev 102:1–128

    Article  CAS  Google Scholar 

  3. Ye L, Mosbach K (2008) Chem Mater 20:859–868

    Article  CAS  Google Scholar 

  4. Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  5. Boonpangrak S, Whitcombe MJ, Prachayasittikul V, Mosbach K, Ye L (2006) Biosens Bioelectron 22:349–354

    Article  CAS  Google Scholar 

  6. Moad G, Rizzardo E, Thang SH (2008) Polymer 49:1079–1131

    Article  CAS  Google Scholar 

  7. Otsu T (2000) J Polym Sci Part A Polym Chem 38:2121–2136

    Article  CAS  Google Scholar 

  8. Zu B, Zhang Y, Guo X, Zhang H (2010) J Polym Sci Part A Polym Chem 48:532–541

    Article  CAS  Google Scholar 

  9. Piletska EV, Villoslada FN, Chianella IBA, Karim K, Whitcombe MJ, Piletsky SA, Doucette GJ, Ramsdell JS (2008) Anal Chim Acta 610:35–43

    Article  CAS  Google Scholar 

  10. Zhou D, Teng H, Koike KKY, Okamoto Y (2008) J Polym Sci Part A Polym Chem 46:4748–4755

    Article  CAS  Google Scholar 

  11. Bielawskia CW, Grubbs RH (2007) Prog Polym Sci 32:1–29

    Article  Google Scholar 

  12. Choi TL, Grubbs RH (2003) Angew Chem Int Ed 42:1743–1746

    Article  CAS  Google Scholar 

  13. Piotti ME (1999) Curr Opin Solid State Mater Sci 4:539–547

    Article  CAS  Google Scholar 

  14. Perrott MG, Novak BM (1995) Macromolecules 28:3492–3496

    Article  CAS  Google Scholar 

  15. Singh R, Czekelius C, Schrock RR (2006) Macromolecules 39:1316–1323

    Article  CAS  Google Scholar 

  16. Buchmeiser MR (2004) J Chromatogr A 1060:43–60

    Article  CAS  Google Scholar 

  17. Lubbad S, Buchmeiser MR (2003) Macromol Rapid Commun 24:580–584

    Article  CAS  Google Scholar 

  18. Mayr B, Eder K, Buchmeiser MR, Huber CG (2002) Anal Chem 74:6080–6087

    Article  CAS  Google Scholar 

  19. Gatschelhofer C, Magnes C, Pieber TR, Buchmeiser MR, Sinner F (2005) M. J Chromatogr A 1090:81–89

    Article  CAS  Google Scholar 

  20. Sinner F, Buchmeiser MR (2000) Macromolecules 33:5777–5786

    Article  CAS  Google Scholar 

  21. Patel A, Fouace S, Steinke JHG (2003) Chem Commun 88–89

  22. Patel A, Fouace S, Steinke JHG (2004) Anal Chim Acta 504:53–62

    Article  CAS  Google Scholar 

  23. Enholm EJ, Allais F, Martin RT, Mohamed R (2006) Macromolecules 39:7859–7862

    Article  CAS  Google Scholar 

  24. Bagheri H, Mohammadi A, Salemi A (2004) Anal Chim Acta 513:445–449

    Article  CAS  Google Scholar 

  25. Hamdaoui O, Naffrechoux E, Hazar J (2007) J Hazard Mater 147:381–394

    Article  CAS  Google Scholar 

  26. Abecassis M, Landau MV, Brenner A, Herskowitz M (2007) J Catal 247:201–213

    Article  Google Scholar 

  27. Gao JJ, Liu LH, Liu XR, Zhou HD, Huang SB, Wang ZJ (2008) Chemosphere 71:1181–1187

    Article  CAS  Google Scholar 

  28. Sinner F, Buchmeiser MR, Tessadri R, Mupa M, Wurst K, Bonn GK (1998) J Am Chem Soc 120:2790–2797

    Article  CAS  Google Scholar 

  29. Umpleby RJI, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu DJ (2004) Chromatogr B 804:141–149

    Article  CAS  Google Scholar 

  30. Weck M, Schwab P, Grubbs RH (1996) Macromolecules 29:1789–1793

    Article  CAS  Google Scholar 

  31. Grubbs RH (2006) Angew Chem Int Ed 45:3760–3765

    Article  CAS  Google Scholar 

  32. Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18–29

    Article  CAS  Google Scholar 

  33. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) J Am Chem Soc 117:7105–7111

    Article  CAS  Google Scholar 

  34. Yun J, Marinez ER, Grubbs RH (2004) Organometallics 23:4172–4173

    Article  CAS  Google Scholar 

  35. Love JA, Sanford MS, Day MW, Grubbs RH (2003) J Am Chem Soc 125:10103–10109

    Article  CAS  Google Scholar 

  36. Tranka TM, Morgan JP, Sanford MS, Wilhelm TE, Scholl M, Choi TL, Ding S, Day MW, Grubbs RH (2003) J Am Chem Soc 125:2546–2558

    Article  Google Scholar 

  37. Rajagopal R, Axel R, Helmuth M, Frieder WS, Katterle M (2007) Biosens Bioelectron 22:3318–3325

    Article  Google Scholar 

  38. Buchmeiser MR (2001) Macromol Rapid Commun 22:1081–1094

    Article  Google Scholar 

  39. Fisher A, Grubbs RH (1992) Makromol Chem Macromol Symp 63:271

    Article  CAS  Google Scholar 

  40. Davidson TA, Wagner KB (1998) J Mol Catal: A Chem 133:67

    Article  CAS  Google Scholar 

  41. Davidson TA, Wagner KB, Priddy DB (1996) Macromolecules 29:786

    Article  CAS  Google Scholar 

  42. Fang C, Li SJ (2007) Inorg Organomet Polym 17:623–629

    Article  CAS  Google Scholar 

  43. Wang Y, Zhang J, Zhu XX, Yu A (2007) Polymer 48:5565–5571

    Article  CAS  Google Scholar 

  44. Hong HS, Grubbs RH (2006) J Am Chem Soc 128:3508–3509

    Article  CAS  Google Scholar 

  45. Gallivan JP, Jordan JP, Grubbs RH (2005) Tetrahedron Lett 46:2577–2580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 90717002, 30872109) and National 863 Program (No. 2006AA10Z447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Chen, L., Xu, X. et al. Synthesis of molecularly imprinted polymers via ring-opening metathesis polymerization for solid-phase extraction of bisphenol A. Anal Bioanal Chem 401, 1423–1432 (2011). https://doi.org/10.1007/s00216-011-5178-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5178-x

Keywords

Navigation