Skip to main content
Log in

Sensoric potential of gold–silver core–shell nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The sensitivities of five different core–shell nanostructures were investigated towards changes in the refractive index of the surrounding medium. The shift of the localized surface plasmon resonance (LSPR) maximum served as a measure of the (respective) sensitivity. Thus, gold–silver core–shell nanoparticles (NPs) were prepared with different shell thicknesses in a two-step chemical process without the use of any (possibly disturbing) surfactants. The measurements were supported by ultramicroscopic images in order to size the resulting core–shell structures. When compared to sensitivities of nanostructures reported in the literature with those of the (roughly spherical) gold–silver core–shell NPs, the latter showed comparable (or even higher) sensitivities than gold nanorods. The experimental finding is supported by theoretical calculation of optical properties of such core–shell NP. Extinction spectra of ideal spherical and deformed core–shell NPs with various core/shell sizes were calculated, and the presence of an optimal silver shell thickness with increased sensitivity was confirmed. This effect is explained by the existence of two overlapping plasmon bands in the NP, which change their relative intensity upon change of refractive index. Results of this research show a possibility of improving LSPR sensor by adding an extra metallic layer of certain thickness.

Figure: Left TEM image of gold-silver core-shell nanoparticle, Right Two images of E-field distribution in the core-shell nanoparticle at different excitation wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, Springer Series in Materials Science. Springer, Berlin

    Google Scholar 

  2. Dragoman M, Dragoman D (2008) Plasmonics: applications to nanoscale terahertz and optical devices. Prog Quantum Electron 32(1):1–41

    Article  CAS  Google Scholar 

  3. Sepulveda B et al (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251

    Article  CAS  Google Scholar 

  4. Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  5. Stuart DA et al (2005) Biological applications of localised surface plasmonic phenomenae. IEEE Proc Nanobiotechnol 152(1):13–32

    Article  CAS  Google Scholar 

  6. Frederix F et al (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900

    Article  CAS  Google Scholar 

  7. Nath N, Chilkoti A (2004) Label free colorimetric biosensing using nanoparticles. J Fluoresc 14(4):377–389

    Article  CAS  Google Scholar 

  8. Penn SG, He L, Natan MJ (2003) Nanoparticles for bioanalysis. Curr Opin Chem Biol 7(5):609–615

    Article  CAS  Google Scholar 

  9. Xue C, Li Z, Mirkin CA (2005) Large-scale assembly of single-crystal silver nanoprism monolayers. Small 1(5):513–516

    Article  CAS  Google Scholar 

  10. Sannomiya T, Hafner C, Voros J (2009) Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing. J Biomed Opt 14(6):064027

    Article  Google Scholar 

  11. Jensen TR et al (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  12. Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Article  Google Scholar 

  13. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55

    Article  Google Scholar 

  14. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  15. Heard SM et al (1983) The characterization of Ag sols by electron microscopy, optical absorption, and electrophoresis. J Colloid Interface Sci 93(2):545–555

    Article  CAS  Google Scholar 

  16. Murphy CJ et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870

    Article  CAS  Google Scholar 

  17. Jin R et al (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  18. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  Google Scholar 

  19. Chen J et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477

    Article  CAS  Google Scholar 

  20. Oldenburg JS et al (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  21. Kickelbick G et al (2004) Core-shell nanoparticles, vol 2, Encyclopedia of Nanoscience and Nanotechnology., pp 199–220

    Google Scholar 

  22. Morriss RH, Collins LF (1964) Optical properties of multilayer colloids. J Chem Phys 41(11):3357–3363

    Article  CAS  Google Scholar 

  23. Freeman RG et al (1996) Ag-clad Au nanoparticles: novel aggregation, optical, and surface-enhanced Raman scattering properties. J Phys Chem 100(2):718–724

    Article  CAS  Google Scholar 

  24. Lu L et al (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun (Camb) 2:144–145

    Article  Google Scholar 

  25. Rodriguez-Gonzalez B et al (2005) Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J Mater Chem 15(17):1755–1759

    Article  CAS  Google Scholar 

  26. Steinbruck A et al (2006) Preparation and optical characterization of core-shell bimetal nanoparticles. Plasmonics 1(1):79–85

    Article  Google Scholar 

  27. Steinbruck A et al (2008) Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides. J Biophotonics 1(2):104–113

    Article  CAS  Google Scholar 

  28. Festag G et al (2007) Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth. Nanotechnology 18(1)

  29. Malinsky MD et al (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123(7):1471–1482

    Article  CAS  Google Scholar 

  30. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3(4):485–491

    Article  CAS  Google Scholar 

  31. Underwood S, Mulvaney P (1994) Effect of the solution refractive-index on the color of gold colloids. Langmuir 10(10):3427–3430

    Article  CAS  Google Scholar 

  32. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225

    Article  CAS  Google Scholar 

  33. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062

    Article  CAS  Google Scholar 

  34. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6(4):683–688

    Article  CAS  Google Scholar 

  35. Rasband WS (1997–2002) ImageJ. US National Institutes of Health, Bethesda. Available at http://rsb.info.nih.gov/ij

  36. Mie G (1908) Beitrage zur Optik trueber Medien speziell kolloidaler Metalloesungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  37. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  38. Hafner C (1999) Post-modern electromagnetics using intelligent Maxwell solvers. Wiley, New York

    Google Scholar 

  39. Hafner C (2007) Boundary methods for optical nano structures. Phys Stat Solid B, Basic Solid State Phys 244(10):3435–3447

    Article  CAS  Google Scholar 

  40. Smajic J et al (2009) Comparison of numerical methods for the analysis of plasmonic structures. J Comput Theor Nanosci 6(3):763–774

    Article  CAS  Google Scholar 

  41. Palik ED (1984) Handbook of optical constants of solids, vol 1, Journal of the Optical Society of America a-Optics Image Science and Vision. Academic, San Diego

    Google Scholar 

  42. Hacker GW et al (1988) Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol 11:213–221

    CAS  Google Scholar 

  43. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Article  CAS  Google Scholar 

  44. Becker J et al (2008) Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Lett 8(6):1719–1723

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Leibniz Institute of Age Research – Fritz Lipmann Institute providing access to TEM and Katrin Buder for help with TEM measurements. Furthermore, we thank Carsten Sönnichsen (University Mainz, Germany) for providing gold nanorods and Thomas Schüler (FSU Jena) for 3D rendering. This work was supported by IRCSET – Marie Curie International Mobility Fellowship in Science, Engineering and Technology. Funding by the DFG (Fr 1348/12-1) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Fritzsche.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbrück, A., Stranik, O., Csaki, A. et al. Sensoric potential of gold–silver core–shell nanoparticles. Anal Bioanal Chem 401, 1241–1249 (2011). https://doi.org/10.1007/s00216-011-5177-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5177-y

Keywords

Navigation