Skip to main content
Log in

Rational design of biomimetic molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In principle, molecularly imprinted polymer science and technology provides a means for ready access to nano-structured polymeric materials of predetermined selectivity. The versatility of the technique has brought it to the attention of many working with the development of nanomaterials with biological or biomimetic properties for use as therapeutics or in medical devices. Nonetheless, the further evolution of the field necessitates the development of robust predictive tools capable of handling the complexity of molecular imprinting systems. The rapid growth in computer power and software over the past decade has opened new possibilities for simulating aspects of the complex molecular imprinting process. We present here a survey of the current status of the use of in silico-based approaches to aspects of molecular imprinting. Finally, we highlight areas where ongoing and future efforts should yield information critical to our understanding of the underlying mechanisms sufficient to permit the rational design of molecularly imprinted polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Galaev IY, Mattiasson B (1999) ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17:335–340

    CAS  Google Scholar 

  2. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180

    CAS  Google Scholar 

  3. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1–27

    CAS  Google Scholar 

  4. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    CAS  Google Scholar 

  5. Svenson J, Nicholls IA (2001) On the thermal and chemical stability of molecularly imprinted polymers. Anal Chim Acta 435:19–24

    CAS  Google Scholar 

  6. Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    CAS  Google Scholar 

  7. Andersson LI, Müller R, Vlatakis G, Mosbach K (1995) Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine. Proc Natl Acad Sci U S A 92:4788–4792

    CAS  Google Scholar 

  8. Berglund J, Nicholls IA, Lindbladh C, Mosbach K (1996) Recognition in molecularly imprinted polymer alpha(2)-adrenoreceptor mimics. Bioorg Med Chem Lett 6:2237–2242

    CAS  Google Scholar 

  9. Berglund J, Lindbladh C, Nicholls IA, Mosbach K (1998) Selection of phage display combinatorial library peptides with affinity for a yohimbine imprinted methacrylate polymer. Anal Commun 35:3–7

    CAS  Google Scholar 

  10. Liu JQ, Wulff G (2004) Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. J Am Chem Soc 126:7452–7453

    CAS  Google Scholar 

  11. Liu JQ, Wulff G (2004) Molecularly imprinted polymers with strong carboxypeptidase A-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities. Angew Chem Int Ed 43:1287–1290

    CAS  Google Scholar 

  12. Svenson J, Zheng N, Nicholls IA (2004) A molecularly imprinted polymer-based synthetic transaminase. J Am Chem Soc 126:8554–8560

    CAS  Google Scholar 

  13. Thomas NR (1994) Hapten design for the generation of catalytic antibodies. Appl Biochem Biotechnol 47:345–372

    CAS  Google Scholar 

  14. Norell MC, Andersson HS, Nicholls IA (1998) Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. J Mol Recognit 11:98–102

    CAS  Google Scholar 

  15. Sellergren B, Allender CJ (2005) Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev 57:1733–1741

    CAS  Google Scholar 

  16. Ciardelli G, Montevecchi FM, Giusti P, Silvestri D, Morelli I, Cristallini C, Vozzi G (2006) Molecular imprinted nanostructures in biomedical applications. Proc ASME Des Eng Tech Conf 2006:561–567

    Google Scholar 

  17. Silvestri D, Cristallini C, Borrelli C, Barbani N, Giusti P, Ciardelli G (2007) Composite membranes modified with recognition-able nanobeads as potential adsorbers for purification of biological fluids. J Appl Biomater Biomech 5:166–175

    CAS  Google Scholar 

  18. White CJ, Byrne ME (2010) Molecularly imprinted therapeutic contact lenses. Expert Opin Drug Deliv 7:765–780

    CAS  Google Scholar 

  19. Ali M, Byrne ME (2009) Controlled release of high molecular weight hyaluronic acid from molecularly imprinted hydrogel contact lenses. Pharm Res 26:714–726

    CAS  Google Scholar 

  20. Hiratani H, Mizutani Y, Alvarez-Lorenzo C (2005) Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromol Biosci 5:728–733

    CAS  Google Scholar 

  21. Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C (2005) Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 26:1293–1298

    CAS  Google Scholar 

  22. Hiratani H, Alvarez-Lorenzo C (2004) The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems. Biomaterials 25:1105–1113

    CAS  Google Scholar 

  23. Hiratani H, Alvarez-Lorenzo C (2002) Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid. J Control Release 83:223–230

    CAS  Google Scholar 

  24. Nicholls IA, Nilsson-Ekdahl K (2009) Molecular imprints. Swedish patent application 0901541–3

  25. Hoshino Y, Koide H, Urakami T, Kanazawa H, Kodama T, Oku N, Shea KJ (2010) Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 132:6644–6645

    CAS  Google Scholar 

  26. Batra D, Shea KJ (2003) Combinatorial methods in molecular imprinting. Curr Opin Chem Biol 7:434–442

    CAS  Google Scholar 

  27. Sellergren B (ed) (2001) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  28. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2002) Molecular imprinting: from fundamentals to applications. Wiley-VCH, Weinheim

    Google Scholar 

  29. Yan M, Ramström O (eds) (2005) Molecularly imprinted materials: science and technology. Marcel Dekker, New York

    Google Scholar 

  30. Piletsky SA, Turner APF (eds) (2006) Molecular imprinting of polymers. Landes Bioscience, Georgetown

    Google Scholar 

  31. Nicholls IA (1995) Thermodynamic considerations for the design of and ligand recognition by molecularly imprinted polymers. Chem Lett 24:1035–1036

    Google Scholar 

  32. Nicholls IA, Adbo K, Andersson HS, Andersson PO, Ankarloo J, Hedin-Dahlström J, Jokela P, Karlsson JG, Olofsson L, Rosengren J, Shoravi S, Svenson J, Wikman S (2001) Can we rationally design molecularly imprinted polymers? Anal Chim Acta 435:9–18

    CAS  Google Scholar 

  33. Pande VS, Grosberg AY, Tanaka T (1997) How to create polymers with protein-like capabilities: a theoretical suggestion. Phys Dir 107:316–321

    CAS  Google Scholar 

  34. Nicholls IA (1998) Towards the rational design of molecularly imprinted polymers. J Mol Recognit 11:79–82

    CAS  Google Scholar 

  35. Piletsky SA, Panasyuk TL, Piletskaya EV, Nicholls IA, Ulbricht M (1999) Receptor and transport properties of imprinted polymer membranes - a review. J Membr Sci 157:263–278

    CAS  Google Scholar 

  36. Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 35:7499–7504

    CAS  Google Scholar 

  37. Piletsky SA, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2004) Polymer cookery. 2. Influence of polymerization pressure and polymer swelling on the performance of molecularly imprinted polymers. Macromolecules 37:5018–5022

    CAS  Google Scholar 

  38. Piletsky SA, Mijangos I, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2005) Polymer cookery: influence of polymerization time and different initiation conditions on performance of molecularly imprinted polymers. Macromolecules 38:1410–1414

    CAS  Google Scholar 

  39. Leach AR (2001) Molecular dynamics simulation methods. In: Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Harlow

  40. Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27:1208–1209

    CAS  Google Scholar 

  41. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    CAS  Google Scholar 

  42. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    CAS  Google Scholar 

  43. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  44. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    CAS  Google Scholar 

  45. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    CAS  Google Scholar 

  46. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    CAS  Google Scholar 

  47. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740

    CAS  Google Scholar 

  48. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    CAS  Google Scholar 

  49. Cheatham TEI, Kollman PA (1996) Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J Mol Biol 259:434–444

    CAS  Google Scholar 

  50. `Cheatham TEI, Miller JL, Fox T, Darden TA, Kollman PA (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193–4194

    CAS  Google Scholar 

  51. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    CAS  Google Scholar 

  52. van der Ploeg P, Berendsen HJC (1982) Molecular dynamics simulation of a bilayer membrane. J Chem Phys 76:3271–3276

    Google Scholar 

  53. de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Google Scholar 

  54. van Buuren AR, Marrink SJ, Berendsen HJC (1993) A molecular dynamics study of the decane/water interface. J Phys Chem 97:9206–9212

    Google Scholar 

  55. Hsu QC, Wu CD, Fang TH (2005) Studies on nanoimprint process parameters of copper by molecular dynamics analysis. Comput Mater Sci 34:314–322

    CAS  Google Scholar 

  56. Garrison BJ, Delcorte A, Krantzman KD (2000) Molecule liftoff from surfaces. Acc Chem Res 33:69–77

    CAS  Google Scholar 

  57. Masukawa KM, Kollman PA, Kuntz ID (2003) Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations. J Med Chem 46:5628–5637

    CAS  Google Scholar 

  58. Yang H, Elcock AH (2003) Association lifetimes of hydrophobic amino acid pairs measured directly from molecular dynamics simulations. J Am Chem Soc 125:13968–13969

    CAS  Google Scholar 

  59. Li X, Eriksson L (2005) Molecular dynamics study of lignin constituents in water. Holzforschung 59:253–262

    CAS  Google Scholar 

  60. Piletsky SA, Karim K, Piletska EV, Day CJ, Freebairn KW, Legge CH (2001) Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. Analyst 126:1826–1830

    CAS  Google Scholar 

  61. Piletska EV, Turner NW, Turner APF, Piletsky SA (2005) Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. J Control Release 108:132–139

    CAS  Google Scholar 

  62. Piletska EV, Romero-Guerra M, Guerreiro AR, Karim K, Turner APF, Piletsky SA (2005) Adaptation of the molecular imprinted polymers towards polar environment. Anal Chim Acta 542:47–51

    CAS  Google Scholar 

  63. Piletska EV, Romero-Guerra M, Chianella I, Karim K, Turner AR, Piletsky SA (2005) Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers. Anal Chim Acta 542:111–117

    CAS  Google Scholar 

  64. Subrahmanyam S, Piletsky SA, Piletska EV, Chen B, Karim K, Turner APF (2001) ‘Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron 16:631–637

    CAS  Google Scholar 

  65. Piletska EV, Piletsky SA, Karim K, Terpetschnig E, Turner APF (2004) Biotin-specific synthetic receptors prepared using molecular imprinting. Anal Chim Acta 504:179–183

    CAS  Google Scholar 

  66. Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74:1288–1293

    CAS  Google Scholar 

  67. Chianella I, Piletsky SA, Tothill IE, Chen B, Turner APF (2003) MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosens Bioelectron 18:119–127

    CAS  Google Scholar 

  68. Wei S, Jakusch M, Mizaikoff B (2007) Investigating the mechanisms of 17β-estradiol imprinting by computational prediction and spectroscopic analysis. Anal Bioanal Chem 389:423–431

    CAS  Google Scholar 

  69. Pavel D, Lagowski J (2005) Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives. Part I. Polymer 46:7528–7542

    CAS  Google Scholar 

  70. Pavel D, Lagowski J (2005) Computationally designed monomers and polymers for molecular imprinting of theophylline—part II. Polymer 46:7543–7556

    CAS  Google Scholar 

  71. Pavel D, Lagowski J, Lepage CJ (2006) Computationally designed monomers for molecular imprinting of chemical warfare agents—part V. Polymer 47:8389–8399

    CAS  Google Scholar 

  72. Monti S, Cappelli C, Bronco S, Giusti P, Ciardelli G (2006) Towards the design of highly selective recognition sites into molecular imprinting polymers: a computational approach. Biosens Bioelectron 22:153–163

    CAS  Google Scholar 

  73. Lv Y, Lin Z, Tan T, Feng W, Qin P, Li C (2008) Application of molecular dynamics modeling for the prediction of selective adsorption properties of dimethoate imprinting polymer. Sens Actuators B 133:15–23

    Google Scholar 

  74. Yoshida M, Hatate Y, Uezu K, Goto M, Furusaki S (2000) Chiral-recognition polymer prepared by surface molecular imprinting technique. Colloids Surf A 169:259–269

    CAS  Google Scholar 

  75. Toorisaka E, Uezu K, Goto M, Furusaki S (2003) A molecularly imprinted polymer that shows enzymatic activity. Biochem Eng J 14:85–91

    CAS  Google Scholar 

  76. Dong C, Li X, Guo Z, Qi J (2009) Development of a model for the rational design of molecular imprinted polymer: computational approach for combined molecular dynamics/quantum mechanics calculations. Anal Chim Acta 647:117–124

    CAS  Google Scholar 

  77. Liu R, Li X, Li Y, Jin P, Qin W, Qi J (2009) Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach. Biosens Bioelectron 25:629–634

    CAS  Google Scholar 

  78. Li Y, Li X, Li Y, Dong C, Jin P, Qi J (2009) Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach. Biomaterials 30:3205–3211

    CAS  Google Scholar 

  79. Svenson J, Karlsson JG, Nicholls IA (2004) 1H Nuclear magnetic resonance study of the molecular imprinting of (−)-nicotine: template self-association, a molecular basis for cooperative ligand binding. J Chromatogr A 1024:39–44

    CAS  Google Scholar 

  80. Andersson HS, Karlsson JG, Piletsky SA, Koch-Schmidt A, Mosbach K, Nicholls IA (1999) Study of the nature of recognition in molecularly imprinted polymers, II [1] Influence of monomer-template ratio and sample load on retention and selectivity. J Chromatogr A 848:39–49

    CAS  Google Scholar 

  81. Katz A, Davis ME (1999) Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules 32:4113–4121

    CAS  Google Scholar 

  82. Olsson GD, Karlsson BCG, Shoravi S, Wiklander JG, Nicholls IA (2010) Mechanisms underlying molecularly imprinted polymer molecular memory and the role of cross-linker: resolving conjecture on the nature of template recognition in phenylalanine anilide imprinted polymers. J Mol Recognit (submitted)

  83. Karlsson BCG, Rosengren AM, Andersson PO, Nicholls IA (2007) The spectrophysics of warfarin: implications for protein binding. J Phys Chem B 111:10520–10528

    CAS  Google Scholar 

  84. Karlsson BCG, Rosengren AM, Andersson PO, Nicholls IA (2009) Molecular insights on the two fluorescence lifetimes displayed by warfarin from fluorescence anisotropy and molecular dynamics studies. J Phys Chem B 113:7945–7949

    CAS  Google Scholar 

  85. Henschel H, Karlsson BCG, Rosengren AM, Nicholls IA (2010) The mechanistic basis for warfarin’s structural diversity and implications for its bioavailability. J Mol Struct Theochem 958:7–9

    CAS  Google Scholar 

  86. Nicholls IA, Karlsson BCG, Rosengren AM, Henschel H (2010) Warfarin: an environment-dependent switchable molecular probe. J Mol Recognit 23:604–608

    CAS  Google Scholar 

  87. Karlsson BCG, Rosengren AM, Näslund I, Andersson PO, Nicholls IA (2010) Synthetic human serum albumin Sudlow I binding site mimics. J Med Chem 53:7932–7937

    CAS  Google Scholar 

  88. Rosengren AM, Karlsson BCG, Näslund I, Andersson PO, Nicholls IA (2011) In situ detection of warfarin using time-correlated single-photon counting. Biochem Biophys Res Commun 407:60–62

    Google Scholar 

  89. Ansell RJ, Kuah KL (2005) Imprinted polymers for chiral resolution of (±)-ephedrine: understanding the pre-polymerisation equilibrium and the action of different mobile phase modifiers. Analyst 130:179–187

    CAS  Google Scholar 

  90. Ansell RJ, Wang D, Kuah JKL (2008) Imprinted polymers for chiral resolution of (±)-ephedrine. Part 2: probing pre-polymerisation equilibria in different solvents by NMR. Analyst 133:1673–1683

    CAS  Google Scholar 

  91. Ansell RJ, Wang DY (2009) Imprinted polymers for chiral resolution of (±)-ephedrine. Part 3: NMR predictions and HPLC results with alternative functional monomers. Analyst 134:564–576

    CAS  Google Scholar 

  92. Molinelli A, O’Mahony J, Nolan K, Smyth MR, Jakusch M, Mizaikoff B (2005) Analyzing the mechanisms of selectivity in biomimetic self-assemblies via IR and NMR spectroscopy of prepolymerization solutions and molecular dynamics simulations. Anal Chem 77:5196–5204

    CAS  Google Scholar 

  93. O’Mahony J, Karlsson BCG, Mizaikoff B, Nicholls IA (2007) Correlated theoretical, spectroscopic and x-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst 132:1161–1168

    Google Scholar 

  94. O’Mahony J, Wei S, Molinelli A, Mizaikoff B (2006) Imprinted polymeric materials. Insight into the nature of prepolymerization complexes of quercetin imprinted polymers. Anal Chem 78:6187–6190

    Google Scholar 

  95. Karlsson BCG, O’Mahony J, Karlsson JG, Bengtsson H, Eriksson LA, Nicholls IA (2009) Structure and dynamics of monomer−template complexation: an explanation for molecularly imprinted polymer recognition site heterogeneity. J Am Chem Soc 131:13297–13304

    CAS  Google Scholar 

  96. Karlsson JG, Karlsson BCG, Andersson LI, Nicholls IA (2004) The roles of template complexation and ligand binding conditions on recognition in bupivacaine molecularly imprinted polymers. Analyst 129:456–462

    CAS  Google Scholar 

  97. Srebnik S, Lev O, Avnir D (2001) Pore size distribution induced by microphase separation: effect of the leaving group during polycondensation. Chem Mater 13:811–816

    CAS  Google Scholar 

  98. Srebnik S, Lev O (2002) Toward establishing criteria for polymer imprinting using mean-field theory. J Chem Phys 116:10967–10972

    CAS  Google Scholar 

  99. Srebnik S (2004) Theoretical investigation of the imprinting efficiency of molecularly imprinted polymers. Chem Mater 16:883–888

    CAS  Google Scholar 

  100. Yungerman I, Srebnik S (2006) Factors contributing to binding-site imperfections in imprinted polymers. Chem Mater 18:657–663

    CAS  Google Scholar 

  101. Zhao Z, Wang Q, Zhang L, Wu T (2008) Structured water and water−polymer interactions in hydrogels of molecularly imprinted polymers. J Phys Chem B 112:7515–7521

    CAS  Google Scholar 

  102. Fu Q, Sanbe H, Kagawa C, Kunimoto KK, Haginaka J (2003) Uniformly sized molecularly imprinted polymer for (S)-nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein. Anal Chem 75:191–198

    CAS  Google Scholar 

  103. Schwarz L, Holdsworth CI, McCluskey A, Bowyer MC (2004) Synthesis and evaluation of a molecularly imprinted polymer selective to 2,4,6-trichlorophenol. Aust J Chem 57:759–764

    CAS  Google Scholar 

  104. Li P, Rong F, Xie YB, Hu V, Yuan CW (2004) Study on the binding characteristic of S-naproxen imprinted polymer and the interactions between templates and monomers. J Anal Chem 59:939–944

    CAS  Google Scholar 

  105. Pietrzyk A, Kutner W, Chitta R, Zandler ME, D’Souza F, Sannicolo F, Mussini PR (2009) Melamine acoustic chemosensor based on molecularly imprinted polymer film. Anal Chem 81:10061–10070

    CAS  Google Scholar 

  106. Demircelik AH, Andac M, Andac CA, Say R, Denizli A (2009) Molecular recognition-based detoxification of aluminum in human plasma. J Biomater Sci Polym Ed 20:1235–1258

    CAS  Google Scholar 

  107. Riahi S, Edris-Tabrizi F, Javanbakht M, Ganjali MR, Norouzi P (2009) A computational approach to studying monomer selectivity towards the template in an imprinted polymer. J Mol Model 15:829–836

    Google Scholar 

  108. Holdsworth CI, Bowyer MC, Lennard C, McCluskey A (2005) Formulation of cocaine-imprinted polymers utilizing molecular modelling and NMR analysis. Aust J Chem 58:315–320

    CAS  Google Scholar 

  109. Lulinski P, Maciejewska D, Bamburowicz-Klimkowska M, Szutowski M (2007) Dopamine-imprinted polymers: template-monomer interactions, analysis of template removal and application to solid phase extraction. Molecules 12:2434–2449

    CAS  Google Scholar 

  110. Baggiani C, Anfossi L, Baravalle P, Giovannoli C, Tozzi C (2005) Selectivity features of molecularly imprinted polymers recognising the carbamate group. Anal Chim Acta 531:199–207

    CAS  Google Scholar 

  111. Dong WG, Yan M, Zhang ML, Liu Z, Li YM (2005) A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer. Anal Chim Acta 542:186–192

    CAS  Google Scholar 

  112. Gholivand MB, Khodadadian M, Ahmadi F (2010) Computer aided-molecular design and synthesis of a high selective molecularly imprinted polymer for solid-phase extraction of furosemide from human plasma. Anal Chim Acta 658:225–232

    CAS  Google Scholar 

  113. Alizadeh T (2008) Development of a molecularly imprinted polymer for pyridoxine using an ion-pair as template. Anal Chim Acta 623:101–108

    CAS  Google Scholar 

  114. Yao JH, Li X, Qin W (2008) Computational design and synthesis of molecular imprinted polymers with high selectivity for removal of aniline from contaminated water. Anal Chim Acta 610:282–288

    CAS  Google Scholar 

  115. Li Y, Li X, Dong CK, Li YQ, Jin PF, Qi JY (2009) Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization. Biosens Bioelectron 25:306–312

    Google Scholar 

  116. Kowalska A, Stobiecka A, Wysocki S (2009) A computational investigation of the interactions between harmane and the functional monomers commonly used in molecular imprinting. J Mol Struct Theochem 901:88–95

    CAS  Google Scholar 

  117. Del Sole R, Lazzoi MR, Arnone M, Della Sala F, Cannoletta D, Vasapollo G (2009) Experimental and computational studies on non-covalent imprinted microspheres as recognition system for nicotinamide molecules. Molecules 14:2632–2649

    Google Scholar 

  118. Azenha M, Kathirvel P, Nogueira P, Fernando-Silva A (2008) The requisite level of theory for the computational design of molecularly imprinted silica xerogels. Biosens Bioelectron 23:1843–1849

    CAS  Google Scholar 

  119. Ogawa T, Hoshina K, Haginaka J, Honda C, Moto TT, Uchida T (2005) Screening of bitterness-suppressing agents for quinine: the use of molecularly imprinted polymers. J Pharm Sci 94:353–362

    CAS  Google Scholar 

  120. Lai EPC, Feng SY (2003) Molecularly imprinted solid phase extraction for rapid screening of metformin. Microchem J 75:159–168

    CAS  Google Scholar 

  121. Wu LQ, Sun BW, Li YZ, Chang WB (2003) Study properties of molecular imprinting polymer using a computational approach. Analyst 128:944–949

    CAS  Google Scholar 

  122. Dineiro Y, Menendez MI, Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2005) Computational approach to the rational design of molecularly imprinted polymers for voltammetric sensing of homovanillic acid. Anal Chem 77:6741–6746

    CAS  Google Scholar 

  123. Dineiro Y, Menendez MI, Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2006) Computational predictions and experimental affinity distributions for a homovanillic acid molecularly imprinted polymer. Biosens Bioelectron 22:364–371

    CAS  Google Scholar 

  124. Rathbone DL, Ali A, Antonaki P, Cheek S (2005) Towards a polymeric binding mimic for cytochrome CYP2D6. Biosens Bioelectron 20:2353–2363

    CAS  Google Scholar 

  125. Sagawa T, Togo K, Miyahara C, Ihara H, Ohkubo K (2004) Rate-enhancement of hydrolysis of long-chain amino acid ester by cross-linked polymers imprinted with a transition-state analogue: evaluation of imprinting effect in kinetic analysis. Anal Chim Acta 504:37–41

    CAS  Google Scholar 

  126. Voshell SM, Gagné MR (2005) Rigidified dendritic structures for imprinting chiral information. Organometallics 24:6338–6350

    CAS  Google Scholar 

  127. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Google Scholar 

  128. Wu LQ, Zhu KC, Zhao WP, Li YZ (2005) Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal Chim Acta 549:39–44

    CAS  Google Scholar 

  129. Liu Y, Wang F, Tan TW, Lei M (2010) Rational design and study on recognition property of paracetamol-imprinted polymer. Appl Biochem Biotechnol 160:328–342

    CAS  Google Scholar 

  130. Dong WG, Yan M, Liu Z, Wu GS, Li YM (2007) Effects of solvents on the adsorption selectivity of molecularly imprinted polymers: molecular simulation and experimental validation. Sep Purif Technol 53:183–188

    CAS  Google Scholar 

  131. Wang JC, Guo RB, Chen JP, Zhang Q, Liang XM (2005) Phenylurea herbicides-selective polymer prepared by molecular imprinting using N-(4-isopropylphenyl)-N′-butyleneurea as dummy template. Anal Chim Acta 540:307–315

    CAS  Google Scholar 

  132. Jacob R, Tate M, Banti Y, Rix C, Mainwaring DE (2008) Synthesis, characterization, and ab initio theoretical study of a molecularly imprinted polymer selective for biosensor materials. J Phys Chem A 112:322–331

    CAS  Google Scholar 

  133. Wu LQ, Li YZ (2003) Picolinamide-Cu(Ac)(2)-imprinted polymer with high potential for recognition of picolinamide-copper acetate complex. Anal Chim Acta 482:175–181

    CAS  Google Scholar 

  134. Wu LQ, Li YZ (2004) Metal ion-mediated molecular-imprinting polymer for indirect recognition of formate, acetate and propionate. Anal Chim Acta 517:145–151

    CAS  Google Scholar 

  135. Christoforidis KC, Louloudi M, Rutherford AW, Deligiannakis Y (2008) Semiquinone in molecularly imprinted hybrid amino acid-SiO2 biomimetic materials. An experimental and theoretical study. J Phys Chem C 112:12841–12852

    CAS  Google Scholar 

  136. Che AF, Wan LS, Ling J, Liu ZM, Xu ZK (2009) Recognition mechanism of theophylline-imprinted polymers: two-dimensional infrared analysis and density functional theory study. J Phys Chem B 113:7053–7058

    CAS  Google Scholar 

  137. Shiigi H, Kijima D, Ikenaga Y, Hori K, Fukazawa S, Nagaoka T (2005) Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film. J Electrochem Soc 152:H129–H134

    CAS  Google Scholar 

  138. Mukawa T, Goto T, Nariai H, Aoki Y, Imamura A, Takeuchi T (2003) Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates. J Pharm Biomed Anal 30:1943–1947

    CAS  Google Scholar 

  139. Meng ZH, Yamazaki T, Sode K (2004) A molecularly imprinted catalyst designed by a computational approach in catalysing a transesterification process. Biosens Bioelectron 20:1068–1075

    CAS  Google Scholar 

  140. Wu LQ, Li YZ (2004) Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches. J Mol Recognit 17:567–574

    CAS  Google Scholar 

  141. Tada M, Sasaki T, Iwasawa Y (2004) Design of a novel molecular-imprinted Rh-amine complex on SiO2 and its shape-selective catalysis for alpha-methylstyrene hydrogenation. J Phys Chem B 108:2918–2930

    CAS  Google Scholar 

  142. Esbensen KH (ed) (2002) Multivariate data analysis in practice, 5th edn. Camo Process AS, Oslo

    Google Scholar 

  143. Carlsson R (1992) Design and optimization in organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  144. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis. Principles and application. Umetrics Academy, Umeå

    Google Scholar 

  145. Navarro-Villoslada F, Vicente BS, Moreno-Bondi MC (2004) Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A. Anal Chim Acta 504:149–162

    CAS  Google Scholar 

  146. Navarro-Villoslada F, Takeuchi T (2005) Multivariate analysis and experimental design in the screening of combinatorial libraries of molecular imprinted polymers. Bull Chem Soc Jpn 78:1354–1361

    Google Scholar 

  147. Davies MP, De Biasi V, Perrett D (2004) Approaches to the rational design of molecularly imprinted polymers. Anal Chim Acta 504:7–14

    CAS  Google Scholar 

  148. Kempe H, Kempe M (2004) Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromol Rapid Commun 25:315–320

    CAS  Google Scholar 

  149. Ceolin G, Navarro-Villoslada F, Moreno-Bondi MC, Horvai G, Horvath V (2009) Accelerated development procedure for molecularly imprinted polymers using membrane filterplates. J Comb Chem 11:645–652

    CAS  Google Scholar 

  150. Rossi C, Haupt K (2007) Application of the Doehlert experimental design to molecularly imprinted polymers: surface response optimization of specific template recognition as a function of the type and degree of cross-linking. Anal Bioanal Chem 389:455–460

    CAS  Google Scholar 

  151. Mijangos I, Navarro-Villoslada F, Guerreiro AR, Piletska EV, Chianella I, Karim K, Turner APF, Piletsky SA (2006) Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. Biosens Bioelectron 22:381–387

    CAS  Google Scholar 

  152. Koohpaei AR, Shahtaheri SJ, Ganjali MR, Forushani AR, Golbabaei F (2008) Application of multivariate analysis to the screening of molecularly imprinted polymers (MIPs) for ametryn. Talanta 75:978–986

    CAS  Google Scholar 

  153. Tarley CRT, Segatelli MG, Kubota LT (2006) Amperometric determination of chloroguaiacol at submicromolar levels after on-line preconcentration with molecularly imprinted polymers. Talanta 69:259–266

    CAS  Google Scholar 

  154. Santos WDJR, Lima PR, Tarley CRT, Kubota LT (2007) A catalytically active molecularly imprinted polymer that mimics peroxidase based on hemin: application to the determination of p-aminophenol. Anal Bioanal Chem 389:1919–1929

    CAS  Google Scholar 

  155. Koohpaei AR, Shahtaheri SJ, Ganjali MR, Forushani AR, Golbabaei F (2008) Molecular imprinted solid phase extraction for determination of atrazine in environmental samples. Iran J Environ Health Sci Eng 5:283–296

    CAS  Google Scholar 

  156. Tarley CRT, Kubota LT (2005) Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry. Anal Chim Acta 548:11–19

    CAS  Google Scholar 

  157. Santos WDJR, Lima PR, Tarley CRT, Höehr NF, Kubota LT (2009) Synthesis and application of a peroxidase-like molecularly imprinted polymer based on hemin for selective determination of serotonin in blood serum. Anal Chim Acta 631:170–176

    CAS  Google Scholar 

  158. Koohpaei AR, Shahtaheri SJ, Ganjali MR, Forushani AR, Golbabaei F (2009) Optimization of solid-phase extraction using developed modern sorbent for trace determination of ametryn in environmental matrices. J Hazard Mater 170:1247–1255

    CAS  Google Scholar 

  159. Valero-Navarro A, Damiani PC, Fernández-Sánchez JF, Segura-Carretero A, Fernández-Gutiérrez A (2009) Chemometric-assisted MIP-optosensing system for the simultaneous determination of monoamine naphthalenes in drinking waters. Talanta 78:57–65

    CAS  Google Scholar 

  160. Alizadeh T, Ganjali MR, Nourozi P, Zare M (2009) Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples. Anal Chim Acta 638:154–161

    CAS  Google Scholar 

  161. Baggiani C, Anfossi L, Giovannoli C, Tozzi C (2004) Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer. J Chromatogr B 804:31–41

    CAS  Google Scholar 

  162. Rosengren AM, Karlsson JG, Andersson PO, Nicholls IA (2005) Chemometric models of template-molecularly imprinted polymer binding. Anal Chem 77:5700–5705

    CAS  Google Scholar 

  163. Nantasenamat C, Naenna T, Isarankura-Na-Ayudhya C, Prachayasittikul V (2005) Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J Comput Aided Mol Des 19:509–524

    CAS  Google Scholar 

  164. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2007) Quantitative structure-imprinting factor relationship of molecularly imprinted polymers. Biosens Bioelectron 22:3309–3317

    CAS  Google Scholar 

  165. Rosengren AM, Golker K, Karlsson JG, Nicholls IA (2009) Dielectric constants are not enough: principal component analysis of the influence of solvent properties on molecularly imprinted polymer-ligand rebinding. Biosens Bioelectron 25:553–557

    CAS  Google Scholar 

  166. Wythoff BJ (1993) Backpropagation neural networks—a tutorial. Chemom Intell Lab Syst 18:115–155

    CAS  Google Scholar 

  167. Breneman CM, Thompson TR, Rhem M, Dung M (1995) Electron density modeling of large systems using the transferable atom equivalent method. Comput Chem 19:161–179

    CAS  Google Scholar 

  168. Bhand SG, Yilmaz E, Danielsson B (2003) Coupled biosensor, biomimetic and chemometrics strategies for analysis of the metals in complex environmental matrices. J Phys IV 107:4

    Google Scholar 

  169. Wu X, Carroll WR, Shimizu KD (2008) Stochastic lattice model simulations of molecularly imprinted polymers. Chem Mater 20:4335–4346

    CAS  Google Scholar 

  170. Veitl M, Schweiger U, Berger ML (1997) Stochastic simulation of ligand-receptor interaction. Comput Biomed Res 30:427–450

    CAS  Google Scholar 

  171. Nicholls IA, Andersson HS, Charlton C, Henschel H, Karlsson BCG, Karlsson JG, O’Mahony J, Rosengren AM, Rosengren KJ, Wikman S (2009) Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens Bioelectron 25:543–552

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Swedish Research Council (VR), the Crafoord Foundation, the Swedish Knowledge Foundation (KKS), and the Linnaeus University is most gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Nicholls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholls, I.A., Andersson, H.S., Golker, K. et al. Rational design of biomimetic molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development. Anal Bioanal Chem 400, 1771–1786 (2011). https://doi.org/10.1007/s00216-011-4935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4935-1

Keywords

Navigation