Skip to main content
Log in

Use of proton transfer reaction time-of-flight mass spectrometry for the analytical detection of illicit and controlled prescription drugs at room temperature via direct headspace sampling

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The first reported use of proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) for the detection of a range of illicit and prescribed drugs is presented here. We describe the capabilities of PTR-TOF-MS to detect the following commonly used narcotics—ecstasy (N-methyl-3,4-methylenedioxyamphetamine), morphine, codeine, cocaine and heroin—by the direct sampling of the headspace above small solid quantities (approximately 50 mg) of the drugs placed in glass vials at room temperature, i.e. with no heating of the sample and no pre-concentration. We demonstrate in this paper the ability to identify the drugs, both illicit and prescribed, using PTR-TOF-MS through the accurate m/z assignment of the protonated parent molecule to the second decimal place. We have also included in this study measurements with an impure sample of heroin, containing typical substances found in “street” heroin, to illustrate the use of the technology for more “real-world” samples. Therefore, in a real-world complex chemical environment, a high level of confidence can be placed on the detection of drugs. Although the protonated parent is observed for all drugs, the reactant channel leading to this species is not the only one observed and neither is it necessarily the most dominant. Details on the observed fragmentation behaviour are discussed and compared to electrospray ionisation MSn studies available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mayhew CA, Sulzer P, Petersson F, Haidacher S, Jordan A, Märk L, Watts P, Märk TD (2010) Int J Mass Spectrom 289:58–63

    Article  CAS  Google Scholar 

  2. Lai H, Corbin I, Almirall JR (2008) Anal Bioanal Chem 392:105–113

    Article  CAS  Google Scholar 

  3. Petersson F, Sulzer P, Mayhew CA, Watts P, Jordan A, Märk L, Märk TD (2009) Rapid Commun Mass Spectrom 23:3875–3880

    Article  CAS  Google Scholar 

  4. Lokhnauth JK, Snow NH (2005) J Sep Sci 28(7):612–618

    Article  CAS  Google Scholar 

  5. Miki A, Tatsuno M, Katagi M, Nishikawa M, Tsuchihashi H (1997) Jpn J Forensic Toxicol 15(2):142

    CAS  Google Scholar 

  6. Carroll JJ, Le T, DeBono R (2004) Am Lab 36(4):32–34

    CAS  Google Scholar 

  7. Debono R, Stefanou S, Davis M, Walia G (2002) Pharm Technol North Am 26(4):72, 74, 76, 78

    Google Scholar 

  8. Lawrence AH (1989) Anal Chem 61(4):343–349

    Article  CAS  Google Scholar 

  9. Keller T, Keller A, Tutsch-Bauer E, Monticelli F (2006) Forensic Sci Int 161(2–3):130–140

    Article  CAS  Google Scholar 

  10. Kanu AB, Haigh PE, Hill HH Jr (2005) Anal Chim Acta 553(1–2):148–159

    Article  CAS  Google Scholar 

  11. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. CRC, Boca Raton

    Book  Google Scholar 

  12. Kanu AB, Hill HH Jr (2007) Talanta 73:692–699

    Article  CAS  Google Scholar 

  13. Brown P, Watts P, Märk TD, Mayhew CA (2010) Int J Mass Spectrom 294:103–111

    Article  CAS  Google Scholar 

  14. Ionicon Analytik (2010) Innsbruck. http://www.ptrms.com

  15. Jordan A, Haidacher S, Hanel G, Hartungen E, Märk L, Seehauser H, Schottkowsky R, Sulzer P, Märk TD (2009) Int J Mass Spectrom 286:122–128

    Article  CAS  Google Scholar 

  16. Popkie HE, Koski WS, Kaufman JJ (1976) J Am Chem Soc 98:1342–1345

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  18. Nacson S, Harrison AG, Davidson WR (1986) Org Mass Spectrom 21:317–319

    Article  CAS  Google Scholar 

  19. Schoon N, Amelynck C, Debie E, Bulttinck P, Arijs E (2007) Int J Mass Spectrom 263:127–136

    Article  CAS  Google Scholar 

  20. Raith K, Neubert R, Poeknapo C, Boettcher C, Zenk MH, Schmidt J (2003) J Am Soc Mass Spectrom 14:1262–1269

    Article  CAS  Google Scholar 

  21. Zhang Z, Yan B, Liu K, Bo T, Liao Y, Liu H (2008) Rapid Commun Mass Spectrom 22:2851–2862

    Article  CAS  Google Scholar 

  22. Hopkinson AC, Mackay GI, Bohme DK (1979) Can J Chem 57:2996–3004

    Article  CAS  Google Scholar 

  23. Cordell L, Willis KA, Wyche KP, Blake RS, Ellis AM, Monks PS (2007) Anal Chem 79:8359–8366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CAM and PW wish to acknowledge the EPSRC (EP/E027571/1) which in part supported this work. Work was partially supported by the Leopold Franzens Universität, Innsbruck, the Ionicon Analytik GmbH, Innsbruck, the FWF and FFG, Wien and the European Commission, Brussels. FP and SJ acknowledge the support of the Community under a Marie Curie Industry-Academia Partnership and Pathways (grant agreement no. 218065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Mayhew.

Additional information

Published in the special issue Analytical Sciences in Austria with Guest Editors G. Allmaier, W. Buchberger and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, B., Petersson, F., Jürschik, S. et al. Use of proton transfer reaction time-of-flight mass spectrometry for the analytical detection of illicit and controlled prescription drugs at room temperature via direct headspace sampling. Anal Bioanal Chem 400, 2631–2639 (2011). https://doi.org/10.1007/s00216-011-4892-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4892-8

Keywords

Navigation