Skip to main content
Log in

Photoionization cross-section weighted DFT simulations as promising tool for the investigation of the electronic structure of open shell metal-phthalocyanines

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The valence band structure of different metal-phthalocyanines was investigated by comparing ultraviolet photoelectron spectra at different excitation energies with simulated spectra that take the different photoionization cross-sections at these energies into account. The Kohn-Sham eigenvalue spectra, derived from density functional theory calculations, using hybrid exchange-correlation functionals, were weighted with the photoionization coefficients in accordance with the used excitation energy. By applying these techniques, the differences in the photoelectron spectra using He I and He II radiation can be reproduced and investigated. It will be shown that the 3d-orbitals of the used metal central atom of these molecules have a major influence. The changes at different excitation energies were studied for Fe, Co, and Cu central atoms to describe the chemical tailoring effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kadish K, Smith K, Guilard R (2003) The porphyrin handbook 19

  2. Cinchetti M, Heimer K, Wüstenberg J-P, Andreyev O, Bauer M, Lach S, Ziegler Ch, Gao Y, Aeschlimann M (2009) Nat Mater 8:115–119

    Article  CAS  Google Scholar 

  3. Berkowitz J (1978) J Chem Phys 70:2819–2828

    Article  Google Scholar 

  4. Grobosch M, Schmidt C, Kraus R, Knupfer M (2010) Org Electron 11:1483–1488

    Article  CAS  Google Scholar 

  5. Weiler U, Mayer T, Jaegermann W, Kelting C, Schlettwein D, Makarov S, Wöhrle D (2004) Phys Chem B 10:19398–19403

    Google Scholar 

  6. Schlettwein D, Hesse K, Gruhn N, Lee PA, Nebesny KW, Armstrong NR (2001) J Phys Chem B 105:4791–4800

    Article  CAS  Google Scholar 

  7. Hiller S, Schlettwein D, Armstrong NR, Wöhrle D (1998) J Mater Chem 8:945–945

    Article  CAS  Google Scholar 

  8. Grobosch M, Aristov VYu, Molodtsova OV, Schmidt C, Doyle BP, Nannarone S, Knupfer M (2009) J Phys Chem C 113:13219–13222

    Article  CAS  Google Scholar 

  9. Toader T, Gavrila G, Ivanco J, Braun W, Zahn DRT (2009) Applied Surf Science 255:6806–6808

    Article  CAS  Google Scholar 

  10. Kröger I, Stadtmüller B, Stadler C, Ziroff J, Kochler M, Stahl A, Pollinger F, Lee T, Zegenhagen J, Reinert F, Kumpf C (2010) New J Phys 12:083038

    Article  Google Scholar 

  11. Hill IG, Kahn A, Soos ZG, Pascal RA Jr (2000) Chem Phys Lett 327:181–188

    Article  CAS  Google Scholar 

  12. Ishii H, Sugiyama K, Ito E, Seki K (1999) Adv Mater 11:605

    Article  CAS  Google Scholar 

  13. Kahn A, Koch N, Gao WJ (2003) Polym Sci B 41:2529–2548

    Article  CAS  Google Scholar 

  14. Salaneck WR, Fahlman MJ (2004) Mater Res 19:1917–1923

    Article  CAS  Google Scholar 

  15. Knupfer M, Peisert H (2004) Phys Stat Solidi A 201:1055–1074

    Article  CAS  Google Scholar 

  16. Cahen D, Kahn A, Umbach E (2005) Mater Today 8:32–41

    Article  CAS  Google Scholar 

  17. Koch N (2007) Chemphyschem 8:1438–1455

    Article  CAS  Google Scholar 

  18. Koch N (2008) J Phys Condens Matter 20:184008

    Article  Google Scholar 

  19. Ellis T, Park K, Ulrich M, Hulbert S, Rowe J (2006) J Appl Phys 100:093515–093525

    Article  Google Scholar 

  20. Evangelista F, Ruocco A, Gotter R, Cossaro A, Floreano L, Morgante A, Crispoldi F, Betti MG, Mariani C (2009) J Phys Chem 131:174710–174718

    Article  CAS  Google Scholar 

  21. Evangelista F, Carravetta V, Stefani G, Jansik B, Alagia M, Stranges S, Ruocco A (2007) J Phys Chem 126:124709–124719

    Article  Google Scholar 

  22. Åhlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Mårtensson N, Puglia C, Brena B, Nyberg M, Luo Y (2006) J Chem Phys 125:034709–034716

    Article  Google Scholar 

  23. Maslyuk V, Aristov V, Molodtsova O, Vyalikh D, Zhilin V, Ossipyan Y, Bredow T, Mertig I, Knupfer M (2009) Appl Phys A 94:485–489

    Article  CAS  Google Scholar 

  24. Bhattacharjee S, Brena B, Banerjee R, Wende H, Eriksson O, Sanyal B (2010) Chem Phys, online, doi:10.1016/j.chemphys.2010.08.020

  25. Kessler B (1998) Appl Phys A Mater Sci Process 67:125–133

    Article  CAS  Google Scholar 

  26. Aristov V, Molodtsova O, Maslyuk V, Vyalikh D, Zhilin V, Ossipyan Y, Bredowe T, Mertig I, Knupfer M (2007) Appl Surf Sci 254:20–25

    Article  CAS  Google Scholar 

  27. Bialek B, Kim I, Lee J (2003) Thin Solid Films 436:107–114

    Article  CAS  Google Scholar 

  28. Downes J, McGuinness C, Glans P, Learmonth T, Fu D, Sheridan P, Smith K (2004) Chem Phys Lett 390:203–207

    Article  CAS  Google Scholar 

  29. Orti E, Bredas J (1992) J Am Chem Soc 114:8669–8675

    Article  CAS  Google Scholar 

  30. Giovannetti G, Brocks G, van den Brink J (2008) Phys Rev B 77:035133–035141

    Article  Google Scholar 

  31. Liao M, Scheiner S (2002) J Comput Chem 23:1391–1496

    Article  CAS  Google Scholar 

  32. Brede J, Atodiresei N, Kuck S, Lazic P, Caciuc V, Morikawa Y, Hoffmann G, Blügel S, Wiesendanger R (2010) PRL 105:047204–047208

    Article  Google Scholar 

  33. Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou J, Zhu Q (2005) Science 309:1542–1544

    Article  CAS  Google Scholar 

  34. Evangelisti M, Bartolome J, de Jongh LJ, Filoti G (2002) Phys Rev B 66:144410–144420

    Article  Google Scholar 

  35. Bruder I, Schöneboom J, Dinnebier R, Ojala A, Schäfer S, Sens R, Erk P, Weis J (2010) Org Electron 11:589–593

    Article  CAS  Google Scholar 

  36. Coppens P, Li L, Zhu N (1983) J Am Chem 105:6173–6174

    Article  CAS  Google Scholar 

  37. Marom N, Kronik L (2009) Appl Phys A 95:165–172

    Article  CAS  Google Scholar 

  38. Marom N, Hod O, Scuseria GE, Kronik L (2008) Chem Phys 128:164107–164113

    Google Scholar 

  39. Reynolds P, Figgis B (1991) Inorg Chem 30:2294

    Article  CAS  Google Scholar 

  40. Neese F (2003) J Chem Phys 119:9428–9443

    Article  CAS  Google Scholar 

  41. Bialek B, Kim I, Lee J (2006) Thin Solid Films 513:110–113

    Article  CAS  Google Scholar 

  42. Rosa A, Baerends EJ (1994) Inorg Chem 33:584–595

    Article  CAS  Google Scholar 

  43. Calzolari A, Ferretti A, Nardelli MB (2007) Nanothechnology 18:424013

    Article  Google Scholar 

  44. Vogel M, diploma thesis TU Kaiserslautern

  45. Vogel M, Schmitt F, Sauther J, Baumann B, Lach S, Ziegler C, to be published elsewhere

  46. Frisch MJ, Gaussian, Inc, Wallingford, CT using either Revision C. 01wis2 (2004) or Revision E. 0101+MNG (2007)

  47. Tirado-Rives J, Jorgensen WL (2008) J Chem Theory Comput 4(2):297–306

    Article  CAS  Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  49. Marom N, Kronik L (2009) Appl Phys A 95:159–163

    Article  CAS  Google Scholar 

  50. Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107–064122

    Article  Google Scholar 

  51. Balabanov NB, Peterson KA (2006) J Chem Phys 125:074110–074120

    Article  Google Scholar 

  52. Jensen F (2001) J Chem Phys 115:9113–9126

    Article  CAS  Google Scholar 

  53. Stener M, Fronzoni G, Toffoli D, Decleva P (2002) Chem Physics 282(3):337–351

    Article  CAS  Google Scholar 

  54. Woicik JC, Nelson EJ, Kronik L, Jain M, Chelikowsky JR, Heskett D, Berman LE, Herman GS (2002) PRL 89:77401

    Article  CAS  Google Scholar 

  55. Woicik JC, Yekutiel M, Nelson EJ, Jacobson N, Pfalzer P, Klemm M, Horn S, Kronik L (2007) PRB 76:165101

    Article  Google Scholar 

  56. Yeh JJ (1993) Photoionization cross-sections and asymmetry parameters, Gordon and Breach. Science Publishers, Langhorne, PE (USA)

    Google Scholar 

  57. Yeh JJ, Lindau I (1985) At Data Nucl Data Tables 32:1–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Ziegler.

Additional information

Published in the special issue on Applied Surface Analysis with Guest Editor Michael Kopnarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, M., Schmitt, F., Sauther, J. et al. Photoionization cross-section weighted DFT simulations as promising tool for the investigation of the electronic structure of open shell metal-phthalocyanines. Anal Bioanal Chem 400, 673–678 (2011). https://doi.org/10.1007/s00216-011-4785-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4785-x

Keywords

Navigation