Skip to main content
Log in

Classification of bacteria by simultaneous methylation–solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid–liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 ± 3% correct classification efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (2005) Disease listing, foodborne illness, general information | CDC bacterial, mycotic diseases. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/foodborneinfections_g.htm. Accessed Feb 2009

  2. Cronin AK (2003) Terrorist motivations for chemical and biological weapons use: placing the threat in context. http://www.fas.org/irp/crs/RL31831.pdf. Accessed Feb 2009

  3. Holzer G, Bourne TF, Bertsch W (1989) J Chromatogr 468:181–190

    Article  Google Scholar 

  4. Basile F, Beverly MB, Voorhees KJ, Hadfield TL (1998) Trends Anal Chem 17:95–109

    Article  CAS  Google Scholar 

  5. Dworzanski JP, Berwald L, Meuzelaar HLC (1990) Appl Environ Microbiol 56:1717–1724

    CAS  Google Scholar 

  6. Whittaker P, Fry FS, Curtis SK, Al-Khaldi SF, Mossoba MM, Yurawecz MP, Dunkel VC (2005) J Agric Food Chem 53:3735–3742

    Article  CAS  Google Scholar 

  7. Buyer JS (2002) J Microbiol Meth 51:209–215

    Article  CAS  Google Scholar 

  8. Buyer JS (2003) J Microbiol Meth 54:117–120

    Article  CAS  Google Scholar 

  9. Poerschmann J, Parsi Z, Gorecki T, Augustin J (2005) J Chromatogr A 1071:99–109

    Article  CAS  Google Scholar 

  10. Basile F, Beverly MB, Abbas-Hawks C, Mowry CD, Voorhees KJ, Hadfield TL (1998) Anal Chem 70:1555–1562

    Article  CAS  Google Scholar 

  11. Hendricker AD, Abbas-Hawks C, Basile F, Voorhees KJ, Hadfield TL (1999) Int J Mass Spectrom 191:331–342

    Article  Google Scholar 

  12. Ochoa ML, Harrington PB (2005) Anal Chem 77:854–863

    Article  CAS  Google Scholar 

  13. Gharaibeh AA, Voorhees KJ (1996) Anal Chem 68:2805–2810

    Article  CAS  Google Scholar 

  14. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, New York

    Google Scholar 

  15. Pan L, Pawliszyn J (1997) Anal Chem 69:196–205

    Article  CAS  Google Scholar 

  16. Larreta J, Vallejo A, Bilbao U, Usobiaga A, Arana G, Zuloaga O (2007) J Sep Sci 30:2293–2304

    Article  CAS  Google Scholar 

  17. Liu YQ, Cho SR, Danielson ND (2002) Anal Bioanal Chem 373:64–69

    Article  CAS  Google Scholar 

  18. Farag MA, Ryu C-M, Sumner LW, Pare PW (2006) Phytochemistry 67:2262–2268

    Article  CAS  Google Scholar 

  19. Ogihara H, Horimoto Y, Wang ZH, Skura BJ, Nakai S (2000) J Agric Food Chem 48:2253–2259

    Article  CAS  Google Scholar 

  20. Harrington PB (1991) J Chemom 5:467–486

    Article  Google Scholar 

  21. Wang C, Kong HW, Guan YF, Yang J, Gu JR, Yang SL, Xu GW (2005) Anal Chem 77:4108–4116

    Article  CAS  Google Scholar 

  22. Yang L, Bennett R, Strum J, Ellsworth BB, Hamilton D, Tomlinson M, Wolf RW, Housley M, Roberts BA, Welsh J, Jackson BJ, Wood SG, Banka CL, Thulin CD, Linford MR (2009) Anal Bioanal Chem 393:643–654

    Article  CAS  Google Scholar 

  23. Lutz U, Lutz RW, Lutz WK (2006) Anal Chem 78:4564–4571

    Article  CAS  Google Scholar 

  24. Harrington PDB (2006) Trends Anal Chem 25:1112–1124

    Article  Google Scholar 

Download references

Acknowledgements

The Center for Chemical Instrumentation and the Department of Chemistry and Biochemistry at Ohio University are acknowledged for their financial support. Xiaobo Sun, Zhanfeng Xu, and Weiying Lu are thanked for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Harrington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Harrington, P.B. Classification of bacteria by simultaneous methylation–solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters. Anal Bioanal Chem 397, 2959–2966 (2010). https://doi.org/10.1007/s00216-010-3840-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3840-3

Keywords

Navigation