Skip to main content
Log in

Thermal dependence of Raman descriptors of ceramides. Part I: effect of double bonds in hydrocarbon chains

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The barrier function of the stratum corneum (SC) is directly related to: (1) the nature and the composition of the lipids in the intercellular spaces and (2) the conformational order of the ceramides within this layer. The aim of this work was to determine Raman descriptors for the lateral packing, the conformation, and the structure of ceramides III, IIIA, and IIIB issued from the same phytosphingosine ceramide and only presenting differences in the number of double bonds in the hydrocarbon chains. Temperature was used as a variable parameter in order to access the different states of the conformational order and supramolecular organization of the three ceramides, and Raman spectra were collected at each temperature. By using a high-resolution Raman spectrometer and working on a spectral range going from 400 to 3,200 cm−1, we were able to assess simultaneously the different descriptors of structure and organization, i.e., the methyl rocking bands (840–910 cm−1) for the chain-end conformers, the C–C skeletal stretching (1,060–1,130 cm−1), and the CH stretching region (2,800–3,050 cm−1) for the trans and gauche conformations, the CH2 scissoring bands to follow the changes in the lateral packing, and finally the amide I band to evaluate the state of the H-bonds between the polar and head groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Elias PM (2005) Interactions among stratum corneum defensive functions. J Invest Dermatol 125:183–200

    CAS  Google Scholar 

  2. Wertz PW (1996) The nature of the epidermal barrier: biochemical aspects. Adv Drug Deliv Rev 18:283–294

    Article  CAS  Google Scholar 

  3. Wertz PW, van den Bergh B (1998) The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 91(2):85–96

    Article  CAS  Google Scholar 

  4. Jungersted JM et al (2008) Lipids and skin barrier function—a clinical perspective. Contact Dermat 58(5):255–262

    Article  CAS  Google Scholar 

  5. Stewart ME, Downing DT (1999) A new 6-hydroxy-4-sphingenine-containing ceramide in human skin. J Lipid Res 40(8):1434–1439

    CAS  Google Scholar 

  6. Wertz PW et al (1987) Essential fatty acids and epidermal integrity. Arch Dermatol 123(10):1381–1384

    Article  CAS  Google Scholar 

  7. Wertz PW et al (1987) Composition and morphology of epidermal cyst lipids. J Invest Dermatol 89(4):419–425

    Article  CAS  Google Scholar 

  8. Raudenkolb S et al (2003) Polymorphism of ceramide 3. Part 1: an investigation focused on the head group of N-octadecanoyl phytosphingosine. Chem Phys Lipids 123(1):9–17

    Article  CAS  Google Scholar 

  9. Raudenkolb S, Wartewig S, Neubert RH (2003) Polymorphism of ceramide 3. Part 2: a vibrational spectroscopic and X-ray powder diffraction investigation of N-octadecanoyl phytosphingosine and the analogous specifically deuterated d(35) derivative. Chem Phys Lipids 124(2):89–101

    Article  CAS  Google Scholar 

  10. Gniadecka M et al (1998) Structure of water, proteins, and lipids in intact human skin, hair, and nail. J Invest Dermatol 110:393–398

    Article  CAS  Google Scholar 

  11. Goni FM, Alonso A (2006) Biophysics of sphingolipids I membrane properties of sphingosine ceramides and other simple sphingolipids. Biochim Biophys Acta 1758(12):1902–1921

    Article  CAS  Google Scholar 

  12. Holtje M et al (2001) Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol. Biochim Biophys Acta 1511(1):156–167

    Article  CAS  Google Scholar 

  13. Onken HD, Moyer CA (1963) The water barrier in human epidermis. Physical and chemical nature. Arch Dermatol 87:584–590

    CAS  Google Scholar 

  14. Bouwstra JA, Ponec M (2006) The skin barrier in healthy and diseased state. Biochim Biophys Acta 1758(12):2080–2095

    Article  CAS  Google Scholar 

  15. Chen H et al (2000) Fourier transform infrared spectroscopy and differential scanning calorimetry studies of fatty acid homogeneous ceramide 2. Biochim Biophys Acta 1468(1–2):293–303

    CAS  Google Scholar 

  16. Moore DJ, Rerek ME, Mendelsohn R (1997) FTIR spectroscopy studies of the conformational order and phase behavior of ceramides. J Phys Chem 101(44):8933–8940

    CAS  Google Scholar 

  17. Neubert R et al (1997) Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC II. Mixtures of ceramides and saturated fatty acids. Chem Phys Lipids 89(1):3–14

    Article  CAS  Google Scholar 

  18. Wegener M et al (1996) Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC I. Ceramides. Int J Pharm 128:203–213

    Article  CAS  Google Scholar 

  19. Bouwstra JA et al (1998) Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res 39(1):186–196

    CAS  Google Scholar 

  20. Wegener M et al (1997) Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC III. Mixtures of ceramides and cholesterol. Chem Phys Lipids 88(1):73–82

    Article  CAS  Google Scholar 

  21. Raudenkolb S, Wartewig S, Neubert RH (2005) Polymorphism of ceramide 6: a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(alpha-hydroxyoctadecanoyl)-phytosphingosine. Chem Phys Lipids 133(1):89–102

    Article  CAS  Google Scholar 

  22. Garidel P (2005) Structural organisation and phase behaviour of a stratum corneum lipid analogue: ceramide 3A. ChemPhysChem 8(19):2265–2275

    Google Scholar 

  23. Lambers H et al (1999) Ceramides. C.R. 1 (ed)

  24. Product data sheet of ceramide III IIIB, D G P C A, reference B 04/02

  25. Product data sheet of ceramide IIIA, D G P C A, reference B 03/01

  26. Caussin J et al (2008) Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. Biochim Biophys Acta 1778(6):1472–1482

    Article  CAS  Google Scholar 

  27. Gaber BP, Peticolas WL (1977) On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochim Biophys Acta 465(2):260–274

    Article  CAS  Google Scholar 

  28. Gaber BP, Yager P, Peticolas WL (1978) Interpretation of biomembrane structure by Raman difference spectroscopy. Nature of the endothermic transitions in phosphatidylcholines. Biophys J 21(2):161–176

    Article  CAS  Google Scholar 

  29. Bouwstra JA et al (1996) Phase behavior of isolated skin lipids. J Lipid Res 37(5):999–1011

    CAS  Google Scholar 

  30. Bouwstra JA et al (2002) Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. J Invest Dermatol 118(4):606–617

    Article  CAS  Google Scholar 

  31. Caussin J, Gooris GS, Bouwstra JA (2008) FTIR studies show lipophilic moisturizers to interact with stratum corneum lipids, rendering the more densely packed. Biochim Biophys Acta 1778(6):1517–1524

    Article  CAS  Google Scholar 

  32. Lafleur M (1998) Phase behaviour of model stratum corneum lipid mixtures: an infrared spectroscopy investigation. Can J Chem 76(11):1501–1511

    Article  CAS  Google Scholar 

  33. Laugel C, Yagoubi N, Baillet A (2005) ATR-FTIR spectroscopy: a chemometric approach for studying the lipid organisation of the stratum corneum. Chem Phys Lipids 135(1):55–68

    Article  CAS  Google Scholar 

  34. Mimeault M, Bonenfant D (2002) FTIR spectroscopic analyses of the temperature and pH influences on stratum corneum lipid phase behaviors and interactions. Talanta 56(3):395–405

    Article  CAS  Google Scholar 

  35. Rerek ME et al (2005) FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem Phys Lipids 134(1):51–58

    Article  CAS  Google Scholar 

  36. Snyder RG, Hsu SL, Krimm S (1978) Vibrational spectra in the C–H stretching region and the structure of the polymethylene chain. Spectrochim Acta 34A:395–406

    CAS  Google Scholar 

  37. Snyder RG et al (1996) IR spectroscopic study of the structure and phase behavior of long-chain diacyl phosphatidylcholines in the gel state. Biophys J 71(6):3186–3198

    Article  CAS  Google Scholar 

  38. Gaber BP, Yager P, Peticolas WL (1978) Conformational nonequivalence of chains 1 and 2 of dipalmitoyl phosphatidylcholine as observed by Raman spectroscopy. Biophys J 24(3):677–688

    Article  CAS  Google Scholar 

  39. Yellin N, Levin IW (1977) Hydrocarbon chain disorder in lipid bilayers. Temperature dependent Raman spectra of 1,2-diacyl phosphatidylcholine-water gels. Biochim Biophys Acta 489(2):177–190

    CAS  Google Scholar 

  40. O'Leary TJ, Levin IW (1984) Raman spectroscopic study of an interdigitated lipid bilayer. Dipalmitoylphosphatidylcholine dispersed in glycerol. Biochim Biophys Acta 776(2):185–189

    Article  Google Scholar 

  41. Bunow MR, Levin IW (1980) Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy. Biophys J 32(3):1007–1021

    Article  CAS  Google Scholar 

  42. Csiszar A et al (2006) The phase transition behavior of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membrane influenced by 2, 4-dichlorophenol—an FT-Raman spectroscopy study. Chem Phys Lipids 139(2):115–124

    Article  CAS  Google Scholar 

  43. Onogi C, Motoyama M, Hamaguchi H (2008) High concentration trans form unsaturated lipids detected in a HeLa cell by Raman microspectroscopy. J Raman Spectrosc 39(5):555–556

    Article  CAS  Google Scholar 

  44. Wartewig S, Neubert RH (2007) Properties of ceramides and their impact on the stratum corneum structure: a review Part 1: ceramides. Skin Pharmacol Physiol 20(5):220–229

    Article  CAS  Google Scholar 

  45. Moore DJ, Rerek ME, Mendelsohn R (1997) Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. Biochem Biophys Res Commun 231(3):797–801

    Article  CAS  Google Scholar 

  46. Moore DJ, Rerek ME, Mendelsohn R (1999) Role of ceramides 2 and 5 in the structure of the stratum corneum lipid barrier. Int J Cosmet Sci 21(5):353–368

    Article  CAS  Google Scholar 

  47. Sprunt JC, Jayasooriya UA, Wilson RH (2000) A simultaneous FT-Raman-DSC (SRD) study of polymorphism in sn-1,3-distearoyl-2-oleoylglycerol (SOS). ChemPhysChem 2(19):4299–4305

    CAS  Google Scholar 

  48. Wartewig S et al (1998) Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC IV. Mixtures of ceramides and oleic acid. Chem Phys Lipids 91:145–152

    Article  CAS  Google Scholar 

  49. Lawson EE et al (1998) Thermally induced molecular disorder in human stratum corneum lipids compared with a model phospholipid system; FT-Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 54A(3):543–558

    Article  CAS  Google Scholar 

  50. Koningsten JA (1971) In: Koningsten JA (ed) Introduction of the theory of the Raman effect. D. Reidel, Dordrecht

    Google Scholar 

  51. Gobinet C et al (2005) Independent component analysis and Raman spectroscopy on paraffinised non dewaxed cutaneous biopsies: a promising methodology for melanoma early diagnosis. In: International Workshop on Biosignal Processing and Classification BPC. Barcelona, Spain

  52. Gobinet C et al (2005) A method of digital deparaffining based on Raman spectroscopy and independent component analysis: application to melanoma early diagnosis. In: European Medical & Biological Engineering Conference EMBEC 05. Prague, Czech Republic

  53. Pare C, Lafleur M (1998) Polymorphism of POPE/cholesterol system: a 2H nuclear magnetic resonance and infrared spectroscopic investigation. Biophys J 74(2 Pt 1):899–909

    Article  CAS  Google Scholar 

  54. Percot A, Lafleur M (2001) Direct observation of domains in model stratum corneum lipid mixtures by Raman microspectroscopy. Biophys J 81(4):2144–2153

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Dr. Olivier PIOT and Dr. Johanna SAUNIER for their contribution in this work and Pr. Najet YAGOUBI for the IR and DSC instrumentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tfayli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tfayli, A., Guillard, E., Manfait, M. et al. Thermal dependence of Raman descriptors of ceramides. Part I: effect of double bonds in hydrocarbon chains. Anal Bioanal Chem 397, 1281–1296 (2010). https://doi.org/10.1007/s00216-010-3614-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3614-y

Keywords

Navigation