Skip to main content
Log in

Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm−1, assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method.

Raman spectroscopy has been successfully applied to the determination of the amylose content in cassava and corn starches by means of multivariate calibration analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biliaderis CG (1991) Food J Physiol Pharmacol 69:60–78

    CAS  Google Scholar 

  2. Buléon A, Colonna P, Planchot V, Ball S (1998) Int J Biol Macromol 23:85–112

    Article  Google Scholar 

  3. Daiuto ER, Cereda MP, Carvalho LJCB (2002) Braz J Food Technol 5:217–223

    Google Scholar 

  4. Mahmood T, Turner MA, Stoddard F (2007) Starch/Stärke 59:357–365

    Article  CAS  Google Scholar 

  5. Morgano MA, Moriya C, Ferreira MMC (2003) Braz J Food Technol 6:77–83

    CAS  Google Scholar 

  6. Leal ES, Okada FM, Zamora PP (2008) Quim Nova 31:1621–1625

    Google Scholar 

  7. Edwards HGM, Villar SEJ, De Oliveira LFC, Le Hyaric M (2005) Anal Chim Acta 538:175–180

    Article  CAS  Google Scholar 

  8. Edwards HGM, Farwell DW, De Oliveira LFC, Alia JM, Le Hyaric M, De Almeida MV (2005) Anal Chim Acta 532:177–186

    Article  CAS  Google Scholar 

  9. de Oliveira LFC, Colombara R, Edwards HGM (2002) Appl Spectrosc 56:306–311

    Article  Google Scholar 

  10. Moros J, Garrigues S, Guardia M (2007) Anal Chim Acta 593:30–38

    Article  CAS  Google Scholar 

  11. Barthus R, Poppi RJ (2001) Vib Spectrosc 26:99–105

    Article  CAS  Google Scholar 

  12. Paradkar MM, Irudayaraj J (2001) Food Chem 76:231–239

    Article  Google Scholar 

  13. Fechner PM, Wartewig S, Kleinebudde P, Neubert RHH (2005) Carbohydr Res 340:2563–2568

    Article  CAS  Google Scholar 

  14. Zhbankov RG, Firsov SP, Korolik EV, Petrov PT, Lapkovski MP, Tsarenkov VM, Marchenwka MK, Ratajczak H (2000) J Mol Struct 555:85–96

    Article  CAS  Google Scholar 

  15. Schuster KC, Ehmoser H, Gapes JR, Lendl B (2000) Vib Spectrosc 22:181–190

    Article  CAS  Google Scholar 

  16. Kizil R, Irudayaraj J, Seetharaman K (2002) J Agric Food Chem 50:3912–3918

    Article  CAS  Google Scholar 

  17. Dupuy N, Laureyns J (2002) Carbohydr Polym 49:83–90

    Article  CAS  Google Scholar 

  18. Sohn M, Himmelsbach DS, Barton FE (2004) Cereal Chem 81:429–433

    Article  CAS  Google Scholar 

  19. Brereton R (2000) Analyst 125:2125–2154

    Article  CAS  Google Scholar 

  20. International Organization for Standardization (1987) ISO 6647. International Organization for Standardization, Geneva

    Google Scholar 

  21. Savitzky A, Golay MJE (1964) Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  22. Kennard RW, Stone LA (1969) Technometrics 11:137–148

    Article  Google Scholar 

  23. Benzerdjeb AM, Mokhtari INT, Rahal MS (2007) Spectrochim Acta Part A 68:284–299

    Article  Google Scholar 

  24. Mokrane A, Michel PF, Cartier A, Rivail JL (1997) J Mol Struct (Theochem) 395:71–80

    Article  Google Scholar 

  25. Gussem KD, Vandenabeele P, Verbeken A, Moens L (2005) Spectrochim Acta Part A 61:2898–2908

    Google Scholar 

  26. Synytsya A, Copíkova J, Matejka P, Machovic V (2003) Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

  27. Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG (2005) J Mol Struct 752:20–24

    Article  CAS  Google Scholar 

  28. Yang L, Zhang LM (2009) Carbohydr Polym 76:349–361

    Article  CAS  Google Scholar 

  29. Baranska M, Schulz H, Baranski R, Nothnagel T, Christensen LP (2005) J Agric Food Chem 53:6565–6571

    Article  CAS  Google Scholar 

  30. Thygesen LG, Løkke MM, Micklander E, Engelsen SB (2003) Trends Food Sci Technol 14:50–57

    Article  CAS  Google Scholar 

  31. Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2002) Anal Chim Acta 407:261–274

    Article  Google Scholar 

  32. Veij M, Vandenabeele P, De Beer T, Remon JP, Moens L (2009) J Raman Spectrosc 40:297–307

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq, CAPES, and FINEP (Brazilian agencies) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando C. de Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, M.R., Alves, R.S., Nascimbem, L.B.L.R. et al. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397, 2693–2701 (2010). https://doi.org/10.1007/s00216-010-3566-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3566-2

Keywords

Navigation