Skip to main content
Log in

Structural characteristics and gelatinization properties of sour cassava starch

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sour cassava starch is considered a modified starch used in many countries in several food products. Understanding modified starch granule structure is important in the knowledge of its physicochemical properties. Differential scanning calorimetry has been used to evaluate the effect of modifications on gelatinization of several starches. The aim of this work was to evaluate the structural characteristics and the gelatinization properties of commercial sour cassava starches with different total titratable acidity values, and to propose a new sour cassava starch classification by principal component analysis. Total titratable acidity of cassava starches varied from 2.16 to 6.74 %, which classified almost all samples as sour cassava starch. The sour cassava starches of classes from 1 to 4 showed low in iodine affinity and consequentially in apparent amylose content. Cassava starches with acidity ranging from 2.64 to 4.92 % (classes 1–4) displayed erosions on granule surface, high relative crystallinity, and high temperature and enthalpy gelatinization. Cassava starches with acidity above 4.99 % (classes 5 and 6) showed deeper erosions on granules, lower relative crystallinity and enthalpy, which indicated the beginning of degradation of the granule crystalline areas. Principal component analysis allowed verifying that the number of total titratable acidity classes could be reduced from 6 to 3, represented by groups with similar samples in relation to the structural and physicochemical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Copeland L, Blazek J, Salman H, Tang MC. Form and functionality of starch. Food Hydrocoll. 2009;23:1527–34.

    Article  CAS  Google Scholar 

  2. Jane J-L. Current understanding on starch granule structure. J Appl Glycosci. 2006;53:205–13.

    Article  CAS  Google Scholar 

  3. Singh N, Nakaura Y, Inouchi N, Nishinari K. Fine structure, thermal and viscoelastic properties of starches separated from Indica rice cultivars. Starch/Starke. 2007;59:10–20.

    Article  CAS  Google Scholar 

  4. Tester RF, Karkalas J, Qi X. Starch—composition, fine structure and architecture. J Cereal Sci. 2004;39:151–65.

    Article  CAS  Google Scholar 

  5. Campanha RB, Franco CML. Gelatinization properties of native starches and their Naegeli dextrins. J Therm Anal Calorim. 2011;106:799–804.

    Article  CAS  Google Scholar 

  6. Leonel M, Cereda MP. Características físico-químicas de algumas tuberosas amiláceas. Ciênc Tecnol Aliment. 2002;22:65–9.

    Article  CAS  Google Scholar 

  7. Brasil. Normas técnicas especiais relativas a alimentos e bebidas. In: Resolução CNNPA nº 12, 24/07/1978. Diário Oficial da União, 1978. http://www.anvisa.gov.br. Accessed 07 May 2014.

  8. Pereira J, Ciacco CF, Vilela ER, Teixeira AL. Féculas fermentadas na fabricação de biscoitos: estudo de fontes alternativas. Ciênc Tecnol Aliment. 1999;19:287–93.

    Article  Google Scholar 

  9. Taverna LG, Leonel M, Mischan MM. Changes in physical properties of extruded sour cassava starch and quinoa flour blend snacks. Ciênc Tecnol Aliment. 2012;32:826–34.

    Article  Google Scholar 

  10. Cavallini CM, Franco CML. Effect of acid-ethanol treatment followed by Ball milling on structural and physicochemical characteristics of cassava starch. Starch/Starke. 2010;62:236–45.

    Article  CAS  Google Scholar 

  11. Szynkaruk P, Wesolowski M, Samson-Rosa M. Principal component analysis of thermal decomposition of magnesium salts used as drugs. J Therm Anal Calorim. 2010;101:505–12.

    Article  CAS  Google Scholar 

  12. Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. 4th ed. Brasília; 2005.

  13. Hoaglin DC, Mosteller F, Tukey JW. Understanding robust and exploratory data analysis. New York: Wiley; 1983.

    Google Scholar 

  14. Jane J-L, Chen JF. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem. 1992;69:60–5.

    CAS  Google Scholar 

  15. Schoch TJ. Methods in carbohydrate chemistry. In: Whistler RL, editors. New York: Academic press; 1964. pp. 106.

  16. Kasemsuwan T, Jane J, Schnable P, Robertson D. Characterization of the dominant mutant amylose-extender (Ae1-5180) maize starch. Cereal Chem. 1995;72:457–64.

    CAS  Google Scholar 

  17. Nara S, Komiya T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch/Stärke. 1983;35:407–10.

    Article  CAS  Google Scholar 

  18. Franco CML, Wong K, Yoo S, Jane J. Structural and functional characteristics of selected soft wheat starches. Cereal Chem. 2002;79:243–8.

    Article  CAS  Google Scholar 

  19. Silva GO, Takizawa FF, Pedroso RA, Franco CML, Leonel M, Sarmento SBS, Demiate IM. Características físico-químicas de amidos modificados de grau alimentício comercializados no Brasil. Ciênc Tecnol Aliment. 2006;26:188–97.

    Article  Google Scholar 

  20. Jane J-L, Wong K-S, Mcpherson A. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res. 1997;300:219–27.

    Article  CAS  Google Scholar 

  21. Jane J-L, Chen YY, Lee LF, Mcpherson AE, Wong KS, Radosavljevic M, Kasemsuwam T. Effects of amylopectin branch length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;76:629–37.

    Article  CAS  Google Scholar 

  22. Tang H, Watanabe K, Mitsunaga T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydr Polym. 2002;49:217–24.

    Article  CAS  Google Scholar 

  23. Buleon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis – Mini review. Int J Biol Macromol. 1998;23:85–112.

    Article  CAS  Google Scholar 

  24. Moorthy SN. Physicochemical and functional properties of tropical tuber starches: a review. Starch/Stärke. 2002;54:559–92.

    Article  CAS  Google Scholar 

  25. Wang GS, Yu J, Yu J. Conformation and location of amorphous and semi-crystalline regions in C-type starch granules revealed by SEM, NMR and XRD. Food Chem. 2008;110:39–46.

    Article  CAS  Google Scholar 

  26. Jacobs H, Eerlingen RC, Rouseu N, Colonna P, Delcour JA. Acid hydrolysis of native and annealed wheat, potato and pea starches – DSC melting features and chain length distributions of lintnerised starches. Carbohydr Res. 1998;308:359–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination of Research and Superior Education (CAPES) for financial support, and the Cooperativa Mista dos Pequenos Produtores de Polvilho e Derivados da Mandioca da Região do Cará de Bela Vista de Goiás (Cooperabs) for providing samples of sour cassava starch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Costa Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, M.C., Franco, C.M.L., Júnior, M.S.S. et al. Structural characteristics and gelatinization properties of sour cassava starch. J Therm Anal Calorim 123, 919–926 (2016). https://doi.org/10.1007/s10973-015-4990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4990-5

Keywords

Navigation