Skip to main content

Advertisement

Log in

Evaluation of microwave-assisted enzymatic digestion and tandem mass spectrometry for the identification of protein residues from an inorganic solid matrix: implications in archaeological research

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method based on microwave-assisted enzymatic digestion and liquid chromatography–tandem mass spectrometry analysis is presented for the identification of proteins incorporated within solid matrices using protein standards bound to experimental cooking pottery as a validation model. The implementation of microwave irradiation allowed for a significant decrease in overall analysis time in addition to select enhancement of peptide recovery as determined by label-free relative quantitation. We envision that the reported methodology will provide new avenues for scientific discovery in areas such as archaeology and forensics. Results of this series of experiments are part of an ongoing project directed at developing a comprehensive methodology for extracting proteinaceous residues from archaeological pottery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TOC:

Total organic carbon

SC:

Spectral counts

References

  1. Schweitzer MH, Suo Z, Avci R, Asara JM, Allen MA, Arce FT, Horner JR (2007) Science 316:277–280

    Article  CAS  Google Scholar 

  2. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Science 316:280–285

    Article  CAS  Google Scholar 

  3. Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM, Lebleu VS, Duncan MB, Vander Heiden MG, Neveu JM, Lane WS, Cottrell JS, Horner JR, Cantley LC, Kalluri R, Asara JM (2009) Science 324:626–631

    Article  CAS  Google Scholar 

  4. Craig OE, Collins MJ (2000) J Immunol Methods 236:89–97

    Article  CAS  Google Scholar 

  5. Craig OE, Mulville J, Parker MP, Sokol RJ, Gelsthorpe K, Stacey R, Collins MJ (2000) Nature 408:312–312

    Article  CAS  Google Scholar 

  6. Solazzo C, Fitzhugh WW, Rolando C, Tokarski C (2008) Anal Chem 80:4590–4597

    Article  CAS  Google Scholar 

  7. Barnard H, Ambrose SH, Beehr DE, Forster MD, Lanehartd RE, Malaineye ME, Parrf RE, Riderg M, Solazzo C, Yohe RM II (2007) J Archaeol Sci 34:28–37

    Article  Google Scholar 

  8. Heaton K, Solazzo C, Collins MJ, Thomas-Oates J, Bergström ET (2009) J Archaeol Sci 36:2145–2154

    Article  Google Scholar 

  9. Barnard H, Shoemaker L, Craig OE, Rider M, Parr RE, Sutton MQ, Yohe RM II (2007) In: Barnard H, Eerkens J (eds) BAR international series. Archaeopress, Oxford, pp 216–228

    Google Scholar 

  10. Craig OE, Collins MJ (2002) J Archaeol Sci 29:1077–1082

    Article  Google Scholar 

  11. Tuross N, Dillehay TD (1995) J Field Archaeol 22:97–110

    Article  Google Scholar 

  12. Yohe RM II, Newman M, Schneider JS (1991) Am Antiquity 56:659–666

    Article  Google Scholar 

  13. Reuther JD, Lowenstein JM, Gerlach SC, Hood D, Scheuenstuhl G, Ubelaker DH (2006) J Archaeol Sci 33:531–537

    Article  Google Scholar 

  14. Shanks OC, Bonnichsen R, Vella AT, Ream W (2001) J Archaeol Sci 28:965–972

    Article  Google Scholar 

  15. Shanks OC, Kornfeld M, Hawk DD (1999) J Archaeol Sci 26:1183–1191

    Article  Google Scholar 

  16. Shanks OC, Kornfield M, Ream W (2004) Archaeometry 26:663–672

    Article  Google Scholar 

  17. Tuross N, Barnes I, Potts R (1996) J Archaeol Sci 23:289–296

    Article  Google Scholar 

  18. Kooyman B, Newman M, Cluney C, Lobb M, Tolman S, McNeil P, Hills LV (2001) Am Antiquity 66:686–691

    Article  Google Scholar 

  19. Kooyman B, Newman ME, Ceri H (1992) J Archaeological Science 19(3):265–269

    Article  Google Scholar 

  20. Loy TH (1993) World Archaeol 25:44–63

    Article  CAS  Google Scholar 

  21. Gerlach SG, Newman M, Knell EJ, Hall ES (1996) Arctic 49:1–10

    Google Scholar 

  22. Downs EF, Lowenstein JM (1995) J Archaeol Sci 22:11–16

    Article  Google Scholar 

  23. Fiedel S (1996) J Archaeol Sci 23:139–147

    Article  Google Scholar 

  24. Smith PR, Wilson MT (1992) J Archaeol Sci 19:237–241

    Article  Google Scholar 

  25. Newman ME, Yohe RM II, Ceri H, Sutton MQ (1993) J Archaeol Sci 20:93–100

    Article  Google Scholar 

  26. Evershed RP, Tuross N (1996) J Archaeol Sci 23:429–436

    Article  Google Scholar 

  27. Gurfinkel DM, Franklin UM (1988) J Archaeol Sci 15:83–97

    Article  Google Scholar 

  28. Newman M, Julig P (1989) Canadian J Archaeol 13:119–132

    Google Scholar 

  29. Craig OE, Taylor G, Mulville J, Collins MJ, Pearson MP (2005) J Archaeol Sci 32:91–103

    Article  Google Scholar 

  30. Tokarski C, Martin E, Rolando C, Cren-Olivé C (2006) Anal Chem 78:1494–1502

    Article  CAS  Google Scholar 

  31. Kuckova S, Hynek R, Kodicek M (2007) Anal Bioanal Chem 388:201–206

    Article  CAS  Google Scholar 

  32. Fremout W, Sanyova J, Saverwyns S, Vandenabeele P, Moens L (2009) Anal Bioanal Chem 393:1991–1999

    Article  CAS  Google Scholar 

  33. Marlar RA, Leonard BL, Billman BR, Lambert PM, Marlar JE (2000) Nature 407:74–78

    Article  CAS  Google Scholar 

  34. Pramanik BN, Mirza UA, Ing YH, Liu YH, Bartner PL, Weber PC, Bose AK (2002) Protein Sci 11:2676–2687

    Article  CAS  Google Scholar 

  35. Sun W, Gao S, Wang L, Chen Y, Wu S, Wang X, Zheng D, Gao Y (2006) Mol Cell Proteomics 5:769–776

    CAS  Google Scholar 

  36. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Anal Chem 74:5383–5392

    Article  CAS  Google Scholar 

  37. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) Anal Chem 75:4646–4658

    Article  CAS  Google Scholar 

  38. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Mol Cell Proteomics 4:1487–1502

    Article  CAS  Google Scholar 

  39. Hendrickson EL, Xia Q, Wang T, Leigh JA, Hackett M (2006) Analyst 131:1335–1341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of North Texas Health Science Center-University of North Texas Joint Institutional Seed Research Program Grant number G67718, the University of North Texas Research Initiation Grant Program Grant number G34478, and the National Science Foundation, Division of Behavioral and Cognitive Sciences, Archaeometry Technical Development Program Grant number 0822196. We thank Crow Canyon Archaeological Center for access to archaeological pottery samples and thoughtful support of this project. We thank ICBR Proteomics at the University of Florida for the use of their CEM Discover microwave system. We thank Art Goven and Kent Chapman for making this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley M. Stevens Jr.

Additional information

Stanley M. Stevens Jr and Steve Wolverton contributed equally to this work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM

(PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, S.M., Wolverton, S., Venables, B. et al. Evaluation of microwave-assisted enzymatic digestion and tandem mass spectrometry for the identification of protein residues from an inorganic solid matrix: implications in archaeological research. Anal Bioanal Chem 396, 1491–1499 (2010). https://doi.org/10.1007/s00216-009-3341-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3341-4

Keywords

Navigation