Skip to main content
Log in

Determining the absolute, chemical-heterogeneity-corrected molar mass averages, distribution, and solution conformation of random copolymers

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a method by which to obtain the absolute, chemical-heterogeneity-corrected molar mass (M) averages and distributions of copolymers and apply the method to a gradient random copolymer of styrene and methyl methacrylate in which the styrene percentage decreases from approximately 30% to 19% as a function of increasing molar mass. The method consists of separation by size-exclusion chromatography (SEC) with detection using multi-angle static light scattering (MALS), differential viscometry (VISC), differential refractometry (DRI), and ultraviolet absorption spectroscopy (UV) and relies on the preferential absorption of styrene over methyl methacrylate at 260 nm. Using this quadruple-detector SEC/MALS/UV/VISC/DRI approach, the percentage of styrene (%St) in each elution slice is determined. This %St is then used to determine the specific refractive index increment, corrected for chemical composition, at each elution slice, which is then used to obtain the molar mass at each slice, corrected for chemical composition. From this corrected molar mass and from the chemical-composition-corrected refractometer response, the absolute, chemical-heterogeneity-corrected molar mass averages and distribution of the copolymer are calculated. The corrected molar mass and intrinsic viscosity at each SEC elution slice are used to construct a chemical-heterogeneity-corrected Mark–Houwink plot. The slice-wise-corrected M data are used, in conjunction with the MALS-determined R G,z of each slice, to construct a conformation plot corrected for chemical heterogeneity. The corrected molar mass distribution (MMD) of the gradient copolymer extends over an approximately 30,000 g/mol wider range than the uncorrected MMD. Additionally, correction of the Mark–Houwink and conformation plots for the effects of chemical heterogeneity shows that the copolymer adopts a more compact conformation in solution than originally concluded.

Table of Contents Graphic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O'Leary K, Paul DR (2004) Polymer 45:6575–6585

    Article  CAS  Google Scholar 

  2. Stejskal J (2005) Polym Int 54:108–113

    Article  CAS  Google Scholar 

  3. Stejskal J, Kratochvil P (1978) Macromolecules 11:1097–1103

    Article  CAS  Google Scholar 

  4. Medrano R, Laguna MTR, Saiz E, Tarazona MP (2003) Phys Chem Chem Phys 5:151–157

    Article  CAS  Google Scholar 

  5. Nielsen LE (1953) J Am Chem Soc 75:1436–1439

    Article  CAS  Google Scholar 

  6. Benkoski JJ, Fredrickson GH, Kramer EJ (2001) J Polym Sci B, Polym Phys 39:2363–2377

    Article  CAS  Google Scholar 

  7. Netopilík M, Bohdanecký M, Kratochvíl P (1996) Macromolecules 29:6023–6030

    Article  Google Scholar 

  8. Stoyanov C, Shirazi ZH, Audu TOK (1978) Chromatographia 11:63–69

    Article  CAS  Google Scholar 

  9. Mori S, Uno Y (1987) J Appl Polym Sci 34:2689–2699

    Article  CAS  Google Scholar 

  10. Pasch H, Trathnigg B (1999) HPLC of polymers. Springer, Berlin

    Google Scholar 

  11. Striegel AM (2005) Anal Chem 77:104A–113A

    Article  CAS  Google Scholar 

  12. Mourey TH (2004) Int J Polym Anal Charact 9:97–135

    Article  CAS  Google Scholar 

  13. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography, 2nd edn. Wiley, New York

    Google Scholar 

  14. Striegel AM (ed) (2005) Multiple detection in size-exclusion chromatography. ACS Symposium Series, vol 893. American Chemical Society, Washington, DC

  15. Haidar Ahmad IA (2008) Master’s thesis. Florida State University

  16. Michielsen S (1999) In: Brandrup J, Immergut EH (eds) Polymer handbook, 4th edn. Wiley, New York, pp VII/547–VII/627

    Google Scholar 

  17. Ahuja SK (1980) Rheol Acta 19:299–306

    Article  CAS  Google Scholar 

  18. Kennedy MA, Peacock AJ, Failla MD, Lucas JC, Mandelkern L (1995) Macromolecules 28:1407–1421

    Article  CAS  Google Scholar 

  19. Alamo RG, Mandelkern L (1991) Macromolecules 24:6480–6493

    Article  CAS  Google Scholar 

  20. Alamo RG, Viers BD, Mandelkern L (1993) Macromolecules 26:5740–5747

    Article  CAS  Google Scholar 

  21. Alamo RG, Chan EKM, Mandelkern L, Voigt-Martin IG (1992) Macromolecules 25:6381–6394

    Article  CAS  Google Scholar 

  22. Huser T, Yan M (2001) J Photochem Photobiol 144:43–51

    Article  CAS  Google Scholar 

  23. Nguyen T-Q, Doan V, Schwartz BJ (1999) J Chem Phys 110:4068–4078

    Article  CAS  Google Scholar 

  24. Schimpf ME (2002) J Liq Chromatogr Relat Technol 25:2101–2134

    Article  CAS  Google Scholar 

  25. Lee S, Kwon O-S (1995) In: Provder T, Barth HG, Urban MW (eds) Chromatographic characterization of polymers. Hyphenated and multidimensional techniques. Advances in chemistry series, vol 247. American Chemical Society, Washington, pp 93–107

    Chapter  Google Scholar 

  26. Gunderson JJ, Giddings JC (1986) Macromolecules 19:2618–2621

    Article  CAS  Google Scholar 

  27. Schimpf ME, Giddings JC (1989) J Polym Sci B, Polym Phys 27:1317–1332

    Article  CAS  Google Scholar 

  28. Kohjiya S, Iwata K, Yamashita S, Miyamoto T, Inagaki H (1983) Polym J 15:869–874

    Article  CAS  Google Scholar 

  29. Kotaka T, White JL (1974) Macromolecules 7:106–116

    Article  CAS  Google Scholar 

  30. Inagaki H, Tanaka T (1982) Pure Appl Chem 54:309–322

    Article  CAS  Google Scholar 

  31. Kramer I, Pasch H, Handel H, Albert K (1999) Macromol Chem Phys 200:1734–1744

    Article  CAS  Google Scholar 

  32. Albert K (1995) J Chromatogr A 703:123–147

    Article  CAS  Google Scholar 

  33. Dekmezian AH, Morioka T, Camp CE (1990) J Polym Sci B, Polym Phys 28:1903–1915

    Article  CAS  Google Scholar 

  34. Mirabella FM, Barrall EM, Johnson JF (1975) J Appl Polym Sci 19:2131–2141

    Article  Google Scholar 

  35. Hunt BJ, Holding SR (eds) (1989) Size exclusion chromatography. Blackie, Glasgow

    Google Scholar 

  36. Mori S, Suzuki T (1981) J Liq Chromatogr 4:1685–1696

    Article  CAS  Google Scholar 

  37. Meselson M, Stahl FW, Vinograd J (1957) Proc Natl Acad Sci USA 43:581–588

    Article  CAS  Google Scholar 

  38. Stacy CJ (1977) J Appl Polym Sci 21:2231–2240

    Article  CAS  Google Scholar 

  39. Poddubnyi IY, Podalinskii AV, Grechanovskii VA (1972) Vysokomol Soyed 14:714–721

    CAS  Google Scholar 

  40. Staggemeier B, Huang QR, Dubin PL, Morishima Y, Sato T (2000) Anal Chem 72:255–258

    Article  CAS  Google Scholar 

  41. Montaudo MS (2005) In: Striegel AM (ed) Multiple detection in size-exclusion chromatography. ACS symposium series, vol 893. American Chemical Society, Washington, pp 152–167

    Google Scholar 

  42. Stuting HH, Krull IS (1990) Anal Chem 62:2107–2114

    Article  CAS  Google Scholar 

  43. Lee DC, Speckhard TA, Sorensen AD, Cooper SL (1986) Macromolecules 19:2383–2390

    Article  CAS  Google Scholar 

  44. Trainoff SP (2005) US Patent 2005/0075851A1

  45. Balke ST, Mourey TH (2001) J Appl Polym Sci 81:370–383

    Article  CAS  Google Scholar 

  46. Gillespie D, Yau WW, Gipson T (1999) 1998 Int GPC Symp Proc, Waters, Milford, MA, pp. 32–47

  47. Elias H-G (1996) An introduction to polymers. VCH, Weinheim

    Google Scholar 

  48. Blythe AR (1979) Electrical properties of polymers. Cambridge University Press, Cambridge

    Google Scholar 

  49. Schmack G, Tandler B, Vogel R, Beyreuther R, Jacobsen S, Fritz HG (1999) J Appl Polym Sci 73:2785–2797

    Article  CAS  Google Scholar 

  50. Koningsveld R (1972) Chem Zvesti 26:263–287

    CAS  Google Scholar 

  51. Krause S (1986) Pure Appl Chem 58:1553–1560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research through grant 1-1312-0050. We would also like to thank Dr. Deborah Striegel (Department of Mathematics, Florida State University) for her assistance with the “Appendix”, Mr. Dustin Richard (Department of Chemistry and Biochemistry, Florida State University) for the PS and PMMA calibration curve data, and Professor Michael Roper (Department of Chemistry and Biochemistry, Florida State University) for his kind loan of a UV detector and for helpful advice and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Striegel.

Appendix

Appendix

Correcting the R G, z of a bulk copolymer for chemical heterogeneity

In an SEC/MALS/DRI experiment, the z-average radius of gyration R G,z of a bulk homopolymer (i.e., not the R G,z of each SEC elution slice, to which we shall refer here for simplicity as r i ) which, by definition, does not necessitate correction for chemical heterogeneity, is calculated according to [13]:

$$ {R_{{\text{G}},z}} = \frac{{\sum\limits_i {{c_i}{M_i}r_i^2} }}{{\sum\limits_i {{c_i}{M_i}} }} $$
(15)

We want to find the corrected R G,z value of a copolymer which possesses chemical heterogeneity, given the corrected concentration c and molar mass M values. We have

$$ {R_{{\text{G,}}z\;{\text{uncorrected}}}} = \frac{{\sum\limits_i {\left( {{c_i} + {\delta_{{c_i}}}} \right)\left( {{M_i} + {\delta_{{M_i}}}} \right)r_i^2} }}{{\sum\limits_i {\left( {{c_i} + {\delta_{{c_i}}}} \right)\left( {{M_i} + {\delta_{{M_i}}}} \right)} }} $$
(16)

where c i is the corrected c value at slice i, M i is the corrected M value at slice i, \( {\delta_{{c_i}}} \) is the amount of correction of c at slice i, and \( {\delta_{{M_i}}} \)is the amount of correction for M at slice i (with the realization that the various δ terms may be either positive or negative).

By expansion

$$ \sum\limits_i {\left( {{c_i} + {\delta_{{c_i}}}} \right)\left( {{M_i} + {\delta_{{M_i}}}} \right)} = \sum\limits_i {{c_i}{M_i} + {\delta_{{c_i}}}{M_i} + {\delta_{{M_i}}}{c_i} + {\delta_{{c_i}}}{\delta_{{M_i}}}} $$
(17)

Because \( \sum\limits_i {{c_i}{M_i}} \)is needed in the corrected R G,z equation, let the right-hand side of Eq. 17 be written as

$$ \sum\limits_i {{c_i}{M_i} + {\varepsilon_i}} $$
(18)

where \( {\varepsilon_i} = {\delta_{{c_i}}}{M_i} + {\delta_{{M_i}}}{c_i} + {\delta_{{c_i}}}{\delta_{{M_i}}} \).

Substituting Eq. 18 into Eq. 16 results in

$$ {R_{{\text{G,}}z\;{\text{uncorrected}}}} = \frac{{\sum\limits_i {{c_i}{M_i}r_i^2 + {\varepsilon_i}r_i^2} }}{{\sum\limits_i {{c_i}{M_i} + {\varepsilon_i}} }} $$
(19)

Manipulation of Eq. 19 results in

$$ \left( {\sum\limits_i {{c_i}{M_i} + {\varepsilon_i}} } \right){R_{{\text{G,}}z\;{\text{uncorrected}}}} - \sum\limits_i {{\varepsilon_i}r_i^2} = \sum\limits_i {{c_i}{M_i}r_i^2} $$
(20)

Dividing both sides by \( \sum\limits_i {{c_i}{M_i}} \) yields

$$ \frac{{\left( {\sum\limits_i {{c_i}{M_i} + {\varepsilon_i}} } \right){R_{{\text{G,}}z\;{\text{uncorrected}}}} - \sum\limits_i {{\varepsilon_i}r_i^2} }}{{\sum\limits_i {{c_i}{M_i}} }} = \frac{{\sum\limits_i {{c_i}{M_i}r_i^2} }}{{\sum\limits_i {{c_i}{M_i}} }} $$
(21)

As per Eq. 15, the right-hand side of Eq. 21 is the corrected value of R G,z , i.e., R G,z,corrected. Simplifying Eq. 21 results in

$$ {R_{{\text{G,}}z\;{\text{corrected}}}} = \left( {1 + \frac{{\sum\limits_i {{\varepsilon_i}} }}{{\sum\limits_i {{c_i}{M_i}} }}} \right){R_{{\text{G,}}z\;{\text{uncorrected}}}} - \frac{{\sum\limits_i {{\varepsilon_i}r_i^2} }}{{\sum\limits_i {{c_i}{M_i}} }}. $$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haidar Ahmad, I.A., Striegel, A.M. Determining the absolute, chemical-heterogeneity-corrected molar mass averages, distribution, and solution conformation of random copolymers. Anal Bioanal Chem 396, 1589–1598 (2010). https://doi.org/10.1007/s00216-009-3320-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3320-9

Keywords

Navigation