Skip to main content
Log in

Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2010

Abstract

Different methods for the extraction of Dactylopius coccus Costa, Rubia tinctorum L., Isatis tinctoria L., Reseda luteola L., Curcuma longa L. and Cotinus coggygria Scop. from wool fibres are investigated using high-performance liquid chromatography with diode array detector (HPLC-DAD). The efficiencies of five extraction methods which include the use of HCl (widely used extraction method), citric acid, oxalic acid, TFA and a combination of HCOOH and EDTA are compared on the basis of the (a) number, (b) relative quantities, measured as HPLC peak areas and (c) signal-to-noise ratios (S/N) of the compounds extracted from the wool substrates. Flavonoid glycosides and curcuminoids contained in R. luteola L. and C. longa L., respectively, according to liquid chromatography with mass spectrometry (LC-MS) identifications, are not detected after treating the fibres with HCl. All the other milder methods are successful in extracting these compounds. Experiments are performed using HPLC-DAD to compare the HPLC peak areas and the S/N of the following extracted compounds: indigotin, indirubin, curcumin, demethoxycurcumin, bisdemethoxycurcumin, fisetin, sulfuretin, luteolin, luteolin-7-O-glucoside, apigenin, carminic acid, alizarin, puruprin and rubiadin. It is shown that the TFA method provides overall the best results as it gives elevated extraction yields except for fisetin, luteolin, apigenin and luteolin-7-O-glucoside and highest S/N except for fisetin and luteolin-7-O-glucoside. It is noteworthy that treatment of the fibres with the typical HCl extraction method results overall in very low S/N. The TFA method is selected for further studies, as follows. First, it is applied on silk dyed samples and compared with the HCl method. The same relative differences of the TFA and HCl methods observed for the wool dyed samples are reported for the silk dyed samples too, except for rubiadin, luteolin and apigenin. Thus, in most cases, the nature of the substrate (wool or silk) appears to have negligible effects on the relative difference of the two extraction methods. Second, the selected TFA method is applied to treat wool and silk historical samples extracted from textiles of the Mamluk period, resulting in the identification of several colouring compounds. In all extraction methods mentioned above, DMSO is used to dissolve the dyes, after acid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cardon D (2007) Natural dyes—sources, tradition, technology and science. Archetype, London

    Google Scholar 

  2. Hofenk-de Graaff JH (2004) The colourful past: origins, chemistry and identification of natural dyestuffs. Archetype, London

    Google Scholar 

  3. Wouters J (1985) Stud Conserv 30:119–128

    Article  CAS  Google Scholar 

  4. Wouters J, Verhecken A (1989) Stud Conserv 34:189–200

    Article  CAS  Google Scholar 

  5. Wouters J, Verhecken A (1991) J Soc Dyers Colourists 107:266–269

    Article  CAS  Google Scholar 

  6. Wouters J, Rosario-Chirinos N (1992) J Am Inst Conserv 31(2):237–255

    Article  Google Scholar 

  7. Koren ZC (1993) Dyes History Archaeol 11:25–33

    Google Scholar 

  8. Koren ZC (1994) J Soc Dyers Colourists 110:273–277

    Article  CAS  Google Scholar 

  9. Koren ZC (1995) Isr J Chem 35:117–124

    CAS  Google Scholar 

  10. Koren ZC (1995) Dyes History Archaeol 13:27–37

    Google Scholar 

  11. Halpine SM (1996) Stud Conserv 41:76–94

    Article  CAS  Google Scholar 

  12. Novotná P, Pacáková V, Bosáková Z, Štulík K (1999) J Chromatogr A 863:235–241

    Article  Google Scholar 

  13. Cooksey C, Withnall R (2001) Dyes History Archaeol 16/17:91–96

    Google Scholar 

  14. Koren ZC (2001) Dyes History Archaeol 16/17:158–166

    Google Scholar 

  15. Orska-Gawryś J, Surowiec I, Kehl J, Rejniak H, Urbaniak-Walczak K, Trojanowicz M (2003) J Chromatogr A 989:239–248

    Article  Google Scholar 

  16. Hofmann-de Keijzer R, Van Bommel MR (2005) Dyes History Archaeol 20:70–79

    CAS  Google Scholar 

  17. Nowik W, Desrosiers S, Surowiec I, Trojanowicz M (2005) Archaeometry 47(4):835–848

    Article  CAS  Google Scholar 

  18. Joosten I, Van Bommel MR, Hofmann-de Keijzer R, Reschreiter H (2006) Microchim Acta 155:169–174

    Article  CAS  Google Scholar 

  19. Surowiec I, Quye A, Trojanowicz M (2006) J Chromatogr A 1112:209–217

    Article  CAS  Google Scholar 

  20. Clementi C, Nowik W, Romani A, Cibin F, Favaro G (2007) Anal Chim Acta 596:46–54

    Article  CAS  Google Scholar 

  21. Karapanagiotis I, Lakka A, Valianou L, Chryssoulakis Y (2008) Microchim Acta 160(4):477–483

    Article  CAS  Google Scholar 

  22. Ferreira ESB, Quye A, McNab H, Hulme AN, Wouters J, Boon JJ (2001) Dyes History Archaeol 16/17:179–186

    Google Scholar 

  23. Ferreira ESB, Quye A, McNab H, Hulme AN (2002) Dyes History Archaeol 18:63–72

    CAS  Google Scholar 

  24. Ferreira ESB, Quye A, Hulme AN, McNab H (2003) Dyes History Archaeol 19:13–18

    CAS  Google Scholar 

  25. Szostek B, Orska-Gawrys J, Surowiec I, Trojanowicz M (2003) J Chromatogr A 1012:179–192

    Article  CAS  Google Scholar 

  26. Ackacha MA, Połeć-Pawlak K, Jarosz M (2003) J Sep Sci 26:1028–1034

    Article  CAS  Google Scholar 

  27. Zhang X, Laursen RA (2005) Anal Chem 77:2022–2025

    Article  CAS  Google Scholar 

  28. Pawlak K, Puchalska M, Miszczak A, Rosłoniec E, Jarosz M (2006) J Mass Spectrom 41:613–622

    Article  CAS  Google Scholar 

  29. Karapanagiotis I (2006) Am Lab 38(3):36–40

    CAS  Google Scholar 

  30. Boldizsár I, Szűcs Z, Füzfai Z, Molnár-Perl I (2006) J Chromatogr A 1133:259–274

    Article  Google Scholar 

  31. Zhang X, Boytner R, Luis Cabrera J, Laursen R (2007) Anal Chem 79:1575–1582

    Article  CAS  Google Scholar 

  32. Surowiec I, Szostek B, Trojanowicz M (2007) J Sep Sci 30:2070–2079

    Article  CAS  Google Scholar 

  33. Zhang Χ, Good Ι, Laursen R (2008) J Archaeol Sci 35:1095–1103

    Article  Google Scholar 

  34. Rafaëlly L, Héron S, Nowik W, Tchapla A (2008) Dyes Pigments 77:191–203

    Article  Google Scholar 

  35. Westley C, Benkendorff K (2008) J Chem Ecol 34:44–56

    Article  CAS  Google Scholar 

  36. Rosenberg E (2008) Anal Bioanal Chem 391:33–57

    Article  CAS  Google Scholar 

  37. Lech K, Połeć-Pawlak K, Jarosz M (2008) Chem Anal (Warsaw) 53:479–509

    CAS  Google Scholar 

  38. Surowiec I, Orska-Gawryś J, Biesaga M, Trojanowicz M, Hutta M, Halko R, Urbaniak-Walczak K (2003) Anal Lett 36(6):1211–1229

    Article  CAS  Google Scholar 

  39. Van Bommel MR (2005) Dyes History Archaeol 20:30–37

    Google Scholar 

  40. Van Bommel MR, Geldof M, Hendriks E (2005) Art Matters 3:111–137

    Google Scholar 

  41. Colombini MP, Andreotti A, Baraldi C, Degano I, Łucejko JJ (2007) Microchem J 85:174–182

    Article  CAS  Google Scholar 

  42. Surowiec I, Nowik W, Trojanowicz M (in press) Dyes History Archaeol 22

  43. Sanyova J, Reisse J (2006) J Cult Herit 7:229–235

    Article  Google Scholar 

  44. Kirby J, White R (1996) Natl Gallery Tech Bull 17:56–80

    Google Scholar 

  45. Campbell L, Dunkerton J, Kirby J, Monnas L (2001) Natl Gallery Tech Bull 22:29–41

    Google Scholar 

  46. http://www.organic-colorants.org/

  47. Assimopoulou AN, Karapanagiotis I, Vasiliou A, Kokkini S, Papageorgiou VP (2006) Biomed Chromatogr 20:1359–1374

    Article  CAS  Google Scholar 

  48. Wouters J (2001) Dyes History Archaeol 16/17:145–157

    Google Scholar 

  49. Schweppe H, Winter J (1994) In: Feller RL (ed) Artists’ pigments. A handbook of their history and characteristics, vol. 1. Oxford University Press, USA, p 109

    Google Scholar 

  50. Orbán N, Boldizsár I, Szűcs Z, Dános B (2008) Dyes Pigments 77:249–257

    Article  Google Scholar 

  51. Taylor SJ, McDowell IJ (1992) Chromatographia 34(1/2):73–77

    Article  CAS  Google Scholar 

  52. Hiserodt R, Hartman TG, Ho C-T, Rosen RT (1996) J Chromatogr A 740:51–63

    Article  CAS  Google Scholar 

  53. Andary C (2006) 25th meeting of the Dyes in History and Archaeology, Suceava, Romania, 21-22 September

  54. Laursen R, Zhang X (in press) Dyes History Archaeol 26

Download references

Acknowledgements

The authors would like to thank M. van Bommel for his critical review and comments and M. Sardi and A. Ozolin for providing the historical samples. Support by the General Secreteriat for Research and Technology of Greece (Programme PENED 2003-697) and the Getty Foundation (USA) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Karapanagiotis.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-010-3528-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valianou, L., Karapanagiotis, I. & Chryssoulakis, Y. Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography. Anal Bioanal Chem 395, 2175–2189 (2009). https://doi.org/10.1007/s00216-009-3137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3137-6

Keywords

Navigation