Skip to main content
Log in

Electrokinetic sample extraction and enrichment: a new method for the isolation of analytes from sludge-type matrices

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrokinetic sample extraction and enrichment is introduced as a newly developed concept for the analysis of substances in sludge-type or paste-like matrices. It is based on electrokinetic transport phenomena as electromigration and electroosmosis occurring when an electrical field is applied to the fresh, wet samples. Problems usually associated to sample drying can be avoided, e.g., losses of volatile analytes or contamination. We have designed and built a suitable apparatus for electrokinetic sample extraction and enrichment. Appropriate operating conditions (field strength, buffer composition, concentration, and volume) were identified in experiments with an artificial sludge model and real-world lake sediments. A proof of principle of the method was provided by the electromigrative extraction and online enrichment on a solid-phase sorbent disk of an azo dye from a diatomaceous earth slurry. Electroosmotic extraction and enrichment of a cyanobacterial hepatotoxin at trace levels was finally investigated as an application example using lake sediments. Rather clean extracts were obtained even with high organic content sediment samples, as shown by high-performance liquid chromatography with diode array detection.

Schematic representation of the principles of electrokinetic sample extraction and enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soxhlet F (1879) Dinglers Polytech J 232:461–465

    Google Scholar 

  2. Bennett M, Dee HJ, Harkness N (1973) Water Res 7:1849–1859

    Article  CAS  Google Scholar 

  3. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Anal Chem 68:1033–1039

    Article  CAS  Google Scholar 

  4. Wenclawiak B, Rathmann C, Teuber A (1992) Fresenius’ J Anal Chem 344:497–500

    Article  CAS  Google Scholar 

  5. Ganzler K, Salgó A, Valkó K (1986) J Chromatogr 371:299–306

    Article  CAS  Google Scholar 

  6. Pérez-Cid B, Lavilla I, Bendicho C (1999) Anal Chim Acta 378:201–210

    Article  Google Scholar 

  7. Seiler TB, Schulze T, Hollert H (2008) Anal Bioanal Chem 390:1975–1985

    Article  CAS  Google Scholar 

  8. Skauen DM (1971) Chem Eng Prog. Symp Ser 67:35–38

    CAS  Google Scholar 

  9. Smedes F, de Boer J (1997) Trends Anal Chem 16:503–517

    Article  CAS  Google Scholar 

  10. Chiarenzelli J, Scrudato R, Arnold G, Wunderlich M, Rafferty D (1996) Chemosphere 33:899–911

    Article  CAS  Google Scholar 

  11. Seiler TB, Rastall AC, Leist E, Erdinger L, Braunbeck T, Hollert H (2006) J Soils Sediments 6:20–29

    Article  CAS  Google Scholar 

  12. Acar YB, Alshawabkeh AN (1993) Environ Sci Technol 27:2638–2647

    Article  CAS  Google Scholar 

  13. Probstein RF, Hicks RE (1993) Science 260:498–503

    Article  CAS  Google Scholar 

  14. Shapiro AP, Probstein RF (1993) Environ Sci Technol 27:283–291

    Article  CAS  Google Scholar 

  15. Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro AM, Sivavec TM, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S (1999) Environ Sci Technol 33:1092–1099

    Article  CAS  Google Scholar 

  16. Saichek RE, Reddy KR (2003) Chemosphere 51:273–287

    Article  CAS  Google Scholar 

  17. Lageman R (1993) Environ Sci Technol 27:2648–2650

    Article  CAS  Google Scholar 

  18. Yeung AT, Hsu CN (2005) J Environ Eng 131:298–304

    Article  CAS  Google Scholar 

  19. Lewis UJ, Clark MO (1963) Anal Biochem 6:303–315

    Article  CAS  Google Scholar 

  20. Raymond S (1964) Science 146:406–407

    Article  CAS  Google Scholar 

  21. Schuhmacher M, Glocker MO, Wunderlin M, Przybylski M (1996) Electrophoresis 17:848–854

    Article  CAS  Google Scholar 

  22. Fernandez-Patron C, Madrazo J, Hardy E, Mendez E, Frank R, Castellanos-Serra L (1995) Electrophoresis 16:911–920

    Article  CAS  Google Scholar 

  23. Timperman AT, Aebersold R (2000) Anal Chem 72:4115–4121

    Article  CAS  Google Scholar 

  24. Mády G, Buzás I, Havasi F, Sándor Z, Lakatos B (1991) Acta Agron Hung 40:13–30

    Google Scholar 

  25. Vescio PA, Nierzwicki-Bauer SA (1995) J Microbiol Methods 21:225–233

    Article  CAS  Google Scholar 

  26. Rigou P, Rezaei H, Grosclaude J, Staunton S, Quinquampoix H (2006) Environ Sci Technol 40:1497–1503

    Article  CAS  Google Scholar 

  27. Park YG (2007) Biotechnol Bioprocess Eng 12:372–379

    Article  CAS  Google Scholar 

  28. Németh K (1980) Adv Agron 31:155–188

    Article  Google Scholar 

  29. van de Merbel NC (1999) J Chromatogr A 856:55–82

    Article  Google Scholar 

  30. Pedersen-Bjergaard S, Rasmussen KE (2007) Anal Bioanal Chem 388:521–523

    Article  CAS  Google Scholar 

  31. Schmidtkunz C, Stich HB, Welsch T (2009) J Liq Chromatogr Rel Technol 32:801–821

    Article  CAS  Google Scholar 

  32. Tsuji K, Masui H, Uemura H, Mori Y, Harada KI (2001) Toxicon 39:687–692

    Article  CAS  Google Scholar 

  33. Babica P, Kohoutek J, Bláha L, Adamovský O, Maršálek B (2006) Anal Bioanal Chem 385:1545–1551

    Article  CAS  Google Scholar 

  34. Mohamed ZA, El-Sharouny HM, Ali WS (2007) Arch Environ Contam Toxicol 52:489–495

    Article  CAS  Google Scholar 

  35. Smith JL, Boyer GL (2009) Toxicon 53:238–245

    Article  CAS  Google Scholar 

  36. Schmidtkunz C, Welsch T (2009) GIT Labor-Fachzeitschrift 53:216–219

    CAS  Google Scholar 

  37. Svensson H (1961) Acta Chem Scand 15:325–341

    Article  CAS  Google Scholar 

  38. Zhu T, Sun YL, Zhang CX, Ling DK, Sun ZP (1994) J High Resolut Chromatogr 17:563–564

    Article  CAS  Google Scholar 

  39. Macka M, Andersson P, Haddad PR (1998) Anal Chem 70:743–749

    Article  CAS  Google Scholar 

  40. Hjertén S, Liao JL (1995) US Pat 5,464,517

  41. de Maagd PGJ, Hendriks AJ, Seinen W, Sijm DTHM (1999) Water Res 33:677–680

    Article  Google Scholar 

  42. Chen W, Li L, Gan N, Song L (2006) Environ Pollut 143:241–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C. S. gratefully acknowledges financial support by a Landesgraduiertenförderung grant from the State of Baden-Württemberg. Lake sediment samples were collected during a joint project (no. 4500004431) with the LUBW Institute for Lake Research (Langenargen, Germany), and their sedimentological parameters were determined at this institute. In this context, we appreciate the support of Viola Burkhardt-Gehbauer, Andreas Jurischitz, Karin Popp, Erwin Rinné, Dr. Martin Wessels, and Dr. Hans Bernd Stich. We wish to express special thanks to Corinna Frey and C. Menno Müller for their skillful technical assistance in SPE and ESEE experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Welsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidtkunz, C., Welsch, T. Electrokinetic sample extraction and enrichment: a new method for the isolation of analytes from sludge-type matrices. Anal Bioanal Chem 395, 1831–1841 (2009). https://doi.org/10.1007/s00216-009-3059-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3059-3

Keywords

Navigation