Skip to main content
Log in

Standoff detection of nitrotoluenes using 213-nm amplified spontaneous emission from nitric oxide

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method of standoff detection based on the observation of laser-induced fluorescence–amplified spontaneous emission (LIF-ASE) is described. LIF-ASE generates uniaxial intensity distributions of the observed fluorescence with the majority of intensity propagating along the excitation axis in both the forward and backward directions. The detection of bulk vapor at significant standoff distances is readily achieved. This method was used to detect NO directly and as a photoproduct after 213-nm excitation of 2-, 3-, and 4-nitrotoluene. The NO LIF-ASE spectra were studied as a function of buffer gas. These studies showed that the emission from different vibrational states was dependent upon the buffer gas used, suggesting that the populations of vibrational states were influenced by the environment. A similar sensitivity of the vibrational populations was observed when the different nitroaromatic precursors were used in nitrogen buffer gas. Such sensitivity to environmental influences can be used to distinguish among the different nitroaromatic precursors and facilitate the identification of the bulk vapor of these analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Woodfin RL (2007) Trace chemical sensing of explosives. Wiley, Hoboken, NJ, p 363

    Google Scholar 

  2. Moore DS (2007) Sensing and Imaging 8:9–38

    Article  Google Scholar 

  3. Yinon J (2007) Counterterrorist detection techniques of explosives. Elsevier, London

    Google Scholar 

  4. Sharma SK, Misra AK, Lucey PG, Angel SM, McKay CP (2006) Appl Spectrosc 60:871–876

    Article  CAS  Google Scholar 

  5. Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Appl Spectrosc 59:769–775

    Article  CAS  Google Scholar 

  6. Janni J, Gilbert BD, Field RW, Steinfeld JI (1997) Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 53:1375–1381

    Article  Google Scholar 

  7. Riris H, Carlisle CB, McMillen DF, Cooper DE (1996) Appl Opt 35:4694–4704

    Article  CAS  Google Scholar 

  8. Todd MW, Provencal RA, Owano TG, Paldus BA, Kachanov A, Vodopyanov KL, Hunter M, Coy SL, Steinfeld JI, Arnold JT (2002) Appl Phys B-Lasers Opt 75:367–376

    Article  CAS  Google Scholar 

  9. Ramos C, Dagdigian PJ (2007) Appl Opt 46:620–627

    Article  CAS  Google Scholar 

  10. Portnov A, Rosenwaks S, Bar I (2008) Appl Phys Lett 93:041115

    Article  Google Scholar 

  11. Shen YC, Lo T, Taday PF, Cole BE, Tribe WR, Kemp MC (2005) Appl Phys Lett 86:241116

    Article  Google Scholar 

  12. Lo T, Gregory IS, Baker C, Taday PF, Tribe WR, Kemp MC (2006) Vibr Spectrosc 42:243–248

    Article  CAS  Google Scholar 

  13. Shu J, Bar I, Rosenwaks S (2000) Appl Phys B 71:665–672

    Article  CAS  Google Scholar 

  14. Daugey N, Shu J, Bar I, Rosenwaks S (1999) Appl Spectrosc 53:57–64

    Article  CAS  Google Scholar 

  15. Wu DD, Singh JP, Yueh FY, Monts DL (1996) Appl Opt 35:3998–4003

    Article  CAS  Google Scholar 

  16. De Lucia FC, Harmon RS, McNesby KL, Winkel RJ, Miziolek AW (2003) Appl Opt 42:6148–6152

    Article  Google Scholar 

  17. Gronlund R, Lundqvist MSS (2006) Applied Spectroscopy 60853-859

  18. Alden M, Westblom U, Goldsmith JEM (1989) Opt Lett 14:305–307

    Article  CAS  Google Scholar 

  19. Huang YL, Gordon RJ (1992) J Chem Phys 97:6363–6368

    Article  CAS  Google Scholar 

  20. Tserepi AD, Wurzberg E, Miller TA (1997) Chem Phys Lett 265:297–302

    Article  CAS  Google Scholar 

  21. Summerlin LR, Borgford CL, Ealy JB (eds) (1988) Chemical demonstrations: a sourcebook for teachers, 2nd edn. American Chemical Society, Washington, DC

    Google Scholar 

  22. Luque J, Crosley DR (2000) J Phys Chem A 104:2567–2572

    Article  CAS  Google Scholar 

  23. Kosmidis C, Marshall A, Clark A, Deas RM, Ledingham KWD, Singhal RP (1994) Rapid Commun Mass Spectrom 8:607–614

    Article  CAS  Google Scholar 

  24. Arusi-Parpar T, Heflinger D, Lavi R (2001) Appl Opt 40:6677–6681

    Article  CAS  Google Scholar 

  25. Boudreaux GM, Miller TS, Kunefke AJ, Singh JP, Yueh FY, Monts DL (1999) Appl Opt 38:1411–1417

    Article  CAS  Google Scholar 

  26. Swayambunathan V, Sausa RC, Singh G (2000) Appl Spectrosc 54:651–658

    Article  CAS  Google Scholar 

  27. Luque J, Crosley DR (1999) J Chem Phys 111:7405–7415

    Article  CAS  Google Scholar 

  28. Lin MF, Lee YT, Ni CK, Xu SC, Lin MC (2007) J Chem Phys 126:064310

    Article  Google Scholar 

  29. SenGupta S, Upadhyaya HP, Kumar A, Dhanya S, Naik PD, Bajaj P (2008) Chem Phys Lett 452:239–244

    Article  CAS  Google Scholar 

  30. Sheaff CN, Eastwood D, Wai CM, Addleman RS (2008) Appl Spectrosc 62:739–746

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bradley Arnold or Lisa Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, B., Kelly, L., Oleske, J.B. et al. Standoff detection of nitrotoluenes using 213-nm amplified spontaneous emission from nitric oxide. Anal Bioanal Chem 395, 349–355 (2009). https://doi.org/10.1007/s00216-009-2990-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2990-7

Keywords

Navigation