Analytical and Bioanalytical Chemistry

, Volume 394, Issue 7, pp 1747–1760 | Cite as

Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods

  • Mohammad Kamal Hossain
  • Yasutaka Kitahama
  • Genin Gary Huang
  • Xiaoxia Han
  • Yukihiro Ozaki


Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations.


SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures


Surface-enhanced Raman scattering Localized surface plasmon resonances SERS-active substrates Nanoparticles Nanoaggregates Biomolecules 


  1. 1.
    Siebert F, Hildebrandt P (2008) Vibrational spectroscopy in life science. Wiley-VCH, DarmstadtGoogle Scholar
  2. 2.
    Stiles PL, Dieringer FA, Shah NC, Van Duyne RP (2008) Annu Rev Anal Chem 1:601CrossRefGoogle Scholar
  3. 3.
    Otto A (2002) J Raman Spectrosc 33:593CrossRefGoogle Scholar
  4. 4.
    Yongan Y, Alexander B, Klaus K (2007) J Solid State Electrochem 11:150Google Scholar
  5. 5.
    Etchegoin PG, Le Ru EC (2008) Phys Chem Chem Phys 10:6079CrossRefGoogle Scholar
  6. 6.
    Shalaev VM, Sarychev AK (1998) Phys Rev B 57:13265CrossRefGoogle Scholar
  7. 7.
    Campion A, Kambhampati P (1998) Chem Soc Rev 27:241CrossRefGoogle Scholar
  8. 8.
    Le Ru EC, Etchegoin PG (2006) Chem Phys Lett 423:63CrossRefGoogle Scholar
  9. 9.
    Moskovits M, Jeong DH (2004) Chem Phys Lett 397:91CrossRefGoogle Scholar
  10. 10.
    Kuncicky DM, Prevo BG, Velev OD (2006) J Mat Chem 16:1207CrossRefGoogle Scholar
  11. 11.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163CrossRefGoogle Scholar
  12. 12.
    Moskovits M (1985) Rev Mod Phys 57:783CrossRefGoogle Scholar
  13. 13.
    Schatz GC, Van Duyne RP (2002) Handbook of vibrational spectroscopy. Wiley, ChichesterGoogle Scholar
  14. 14.
    Compton AH (1923) Phys Rev 21:483CrossRefGoogle Scholar
  15. 15.
    Cardona M, Güntherodt G (1984) Light scattering in solids vol IV. Springer, BerlinGoogle Scholar
  16. 16.
    Anker JA, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mat 7:442CrossRefGoogle Scholar
  17. 17.
    Kneipp K, Moskovits M, Kneipp H (2006) Surface-enhanced Raman scattering: physics and applications. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Ditlbacher H, Krenn JR, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Appl Phys Lett 80:404CrossRefGoogle Scholar
  19. 19.
    Stefan AM, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Nat Mat 2:229CrossRefGoogle Scholar
  20. 20.
    Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, DordrechtCrossRefGoogle Scholar
  21. 21.
    Raether H (1986) Surface plasmons. Springer, New YorkGoogle Scholar
  22. 22.
    Haes J, Van Duyne RP (2004) Expert Rev Mol Diag 4:527CrossRefGoogle Scholar
  23. 23.
    Itoh T, Biju V, Ishikawa M, Kikkawa Y, Hashimoto K, Ikehata A, Ozaki Y (2006) J Chem Phys 124:134708CrossRefGoogle Scholar
  24. 24.
    Pettinger B (1986) J Chem Phys 85:7442CrossRefGoogle Scholar
  25. 25.
    Itoh T, Yoshida K, Biju V, Kikkawa Y, Ishikawa M, Ozaki Y (2007) Phys Rev B 76:085405CrossRefGoogle Scholar
  26. 26.
    Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121:9932CrossRefGoogle Scholar
  27. 27.
    Etchegoin P, Liem H, Maher RC, Cohen LF, Brown RJC, Hartigan H, Milton MJT, Gallop JC (2002) Chem Phys Lett 366:115CrossRefGoogle Scholar
  28. 28.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Cond Mat 4:1143CrossRefGoogle Scholar
  29. 29.
    Otto A (2003) Indian J Phys 77B:63Google Scholar
  30. 30.
    Persson N (1981) J Chem Phys Lett 82:561CrossRefGoogle Scholar
  31. 31.
    Otto A (1991) J Raman Spectrosc 22:743CrossRefGoogle Scholar
  32. 32.
    Maier SA, Atwater HA (2005) J Appl Phys 98:011101–1CrossRefGoogle Scholar
  33. 33.
    Zeng J, Jia H, An J, Han X, Wu W, Zhao B, Ozaki Y (2008) J Raman Spec 39:1673CrossRefGoogle Scholar
  34. 34.
    Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanotoday 2:18Google Scholar
  35. 35.
    Hossain MK, Shimada T, Kitajima M, Imura K, Okamoto H (2008) Langmuir 24:9241CrossRefGoogle Scholar
  36. 36.
    Imura K, Okamoto H, Hossain MK, Kitajima M (2005) Chem Lett 35:78CrossRefGoogle Scholar
  37. 37.
    Murphy CJ, Sau TK, Gole AM, Orendroff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) J Phys Chem 109:13857Google Scholar
  38. 38.
    Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) Nature Mat 7:527Google Scholar
  39. 39.
    Xia Y, Yin Y, Lu Y, McLellan J (2003) Adv Func Mat 13:907CrossRefGoogle Scholar
  40. 40.
    Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Adv Mater 13:1501CrossRefGoogle Scholar
  41. 41.
    Wu Y, Livneh T, Zhang YX, Cheng G, Wang J, Tang J, Moskovits M, Stucky GD (2004) Nano Lett 4:2337Google Scholar
  42. 42.
    Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) ACS Nano 2:708CrossRefGoogle Scholar
  43. 43.
    Wei A (2006) e-J Surf Sci Nanotech 4:9CrossRefGoogle Scholar
  44. 44.
    Hossain MK, Shimada T, Kitajima M, Imura K, Okamoto H (2008) J Microsc 229:327CrossRefGoogle Scholar
  45. 45.
    Olson LG, Uibel RH, Harris JM (2004) Appl Spectrosc 58:1394CrossRefGoogle Scholar
  46. 46.
    Bulte JWM, Modo MMJ (2008) Nanoparticles in biomedical imaging: emerging technologies and applications. Springer, New York.Google Scholar
  47. 47.
    Imura K, Okamoto H, Hossain MK, Kitajima M (2006) Nano Lett 6:2173Google Scholar
  48. 48.
    Lu Y, Liu GL, Lee LP (2005) Nano Lett 5:5Google Scholar
  49. 49.
    Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) J Am Chem Soc 125:588Google Scholar
  50. 50.
    Itoh T, Hashimoto K, Ozaki Y (2003) Appl Phys Lett 83:2274CrossRefGoogle Scholar
  51. 51.
    Han XX, Kitahama Y, Tanaka Y, Guo J, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:6567CrossRefGoogle Scholar
  52. 52.
    Itoh T, Hashimoto K, Biju V, Ishikawa M, Wood BR, Ozaki Y (2006) J Phys Chem B 110:9579CrossRefGoogle Scholar
  53. 53.
    Shimada T, Imura K, Hossain MK, Kitajima M, Okamoto H (2008) J Phys Chem C 112:4033CrossRefGoogle Scholar
  54. 54.
    Wang H, Kundu J, Halas NJ (2007) Angew Chem Int Ed 46:9040CrossRefGoogle Scholar
  55. 55.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1CrossRefGoogle Scholar
  56. 56.
    Nicolai SHA, Rubim JC (2003) Langmuir 19:4291CrossRefGoogle Scholar
  57. 57.
    Chao Y, Zhou Q, Li Y, Yan Y, Wu Y, Zheng J (2007) J Phys Chem C 111:6990CrossRefGoogle Scholar
  58. 58.
    Aroca RF, Constantino CJL (2000) Langmuir 16:5425CrossRefGoogle Scholar
  59. 59.
    Drachev VP, Nashine VC, Thoreson MD, Ben-Amotz D, Davisson VJ, Shalaev VM (2005) Langmuir 21:8368CrossRefGoogle Scholar
  60. 60.
    Li X, Xu W, Zhang J, Jia H, Yang B, Zhao B, Li B, Ozaki Y (2004) Langmuir 20:1298CrossRefGoogle Scholar
  61. 61.
    Wei G, Wang L, Liu Z, Song Y, Sun L, Yang T, Li Z (2005) J Phys Chem B 109:23941CrossRefGoogle Scholar
  62. 62.
    Xue G, Dong J (1991) Anal Chem 63:2393CrossRefGoogle Scholar
  63. 63.
    Ni F, Cotton TM (1986) Anal Chem 58:3159CrossRefGoogle Scholar
  64. 64.
    Wu Y, Zhao B, Xu W, Li B, Jung YM, Ozaki Y (1999) Langmuir 15:4625CrossRefGoogle Scholar
  65. 65.
    Li F, Cao Q, Lu Y, Xue G (1997) Spectrosc Lett 30:451CrossRefGoogle Scholar
  66. 66.
    Song W, Li W, Cheng Y, Jia H, Zhao G, Zhou Y, Yang B, Xu W, Tian W, Zhao B (2006) J Raman Spectrosc 37:755Google Scholar
  67. 67.
    Ruan W, Wang C, Ji N, Lu Z, Zhou T, Zhao B, Lombardi JR (2008) Langmuir 24:8417CrossRefGoogle Scholar
  68. 68.
    Yao JL, Xu X, Wu DY, Xie Y, Ren B, Tian ZQ, Pan GP, Sun DM, Xue KH (2000) Chem Commun 1627Google Scholar
  69. 69.
    Carney J, Braven H, Seal J, Whitworth E (2006) IVD Technol 11:41Google Scholar
  70. 70.
    Han XX, Jia HY, Wang YF, Lu ZC, Wang CX, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:2799CrossRefGoogle Scholar
  71. 71.
    Han XX, Cai LJ, Guo J, Wang CX, Ruan WD, Han WY, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:3020CrossRefGoogle Scholar
  72. 72.
    Hossain MK, Shibamoto K, Ishioka K, Kitajima M, Mitani T, Nakashima S (2007) J Lumin 122–123:792Google Scholar
  73. 73.
    Lee PC, Meisel DJ (1982) J Phys Chem 86:3391CrossRefGoogle Scholar
  74. 74.
    Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos JV (2005) Adv Colloid Interf Sci 116:45Google Scholar
  75. 75.
    Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) Adv Mater 19:3100CrossRefGoogle Scholar
  76. 76.
    Tian ZQ (2005) J Raman Spectrosc 36:466CrossRefGoogle Scholar
  77. 77.
    Niemeyer CM, Mirkin CA (2004) Nanobiotechnology: concepts, applications and perspectives. Wiley, DenmarkGoogle Scholar
  78. 78.
    Ooka AK, Kuhar KA, Cho N, Garrel RL (1999) Biospectrosc 5:9Google Scholar
  79. 79.
    Arenas JF, Castro JL, Otero JC, Marcos JI (2001) Biopolymers 62:241CrossRefGoogle Scholar
  80. 80.
    Suh JS, Moskovits M (1986) J Am Chem Soc 108:4711CrossRefGoogle Scholar
  81. 81.
    Singha A, Dasgupta S, Roy A (2006) Biophys Chem 120:215CrossRefGoogle Scholar
  82. 82.
    Herne TM, Ahern AM, Garrell RL (1991) J Am Chem Soc 113:846CrossRefGoogle Scholar
  83. 83.
    Podstawka E, Borszowska R, Grabowska M, Drag M, Kafarski P, Proniewicz LM (2005) Surf Sci 599:207CrossRefGoogle Scholar
  84. 84.
    Stosch R, Henrion A, Schiel D, Guttler B (2005) Anal Chem 77:7386CrossRefGoogle Scholar
  85. 85.
    Giese B, McGaughton D (2002) J Phys Chem B 106:1461CrossRefGoogle Scholar
  86. 86.
    Sakar J, Chowdhury J, Ghosh M, De R, Talapatra GB (2005) J Phys Chem B 109:12861CrossRefGoogle Scholar
  87. 87.
    Nirode WF, Devault GL, Sepaniak J (2000) Anal Chem 72:1866CrossRefGoogle Scholar
  88. 88.
    Kneipp K, Wang Y, Dasari RR, Feld MS (1995) Spectrochim Acta 51A:481Google Scholar
  89. 89.
    Faulds K, Stewart L, Smith WE, Graham D (2005) Talanta 67:667CrossRefGoogle Scholar
  90. 90.
    Bell SEJ, Sirimuthu NMS (2006) J Am Chem Soc 128:15580CrossRefGoogle Scholar
  91. 91.
    Faulds K, Smith WE, Graham D (2004) Anal Chem 76:412CrossRefGoogle Scholar
  92. 92.
    Breuzard G, Millot J-M, Riou J-F, Manfait M (2003) Anal Chem 75:4305CrossRefGoogle Scholar
  93. 93.
    Rospendowski B, Kelly K, Wolf CR, Smith WE (1991) J Am Chem Soc 113:1217CrossRefGoogle Scholar
  94. 94.
    Bizzarri AR, Cammostraro S (2002) Appl Spectrosc 56:1531CrossRefGoogle Scholar
  95. 95.
    Feng M, Tachikawa H (2008) J Am Chem Soc 130:7443CrossRefGoogle Scholar
  96. 96.
    Kumar GVP, Reddy BAA, Arif M, Kundu TK, Narayana C (2006) J Phys Chem B 110:16787CrossRefGoogle Scholar
  97. 97.
    Pavel I, McCarney E, Elkhaled A, Morrill A, Plaxco K, Moskovits M (2008) J Phys Chem C 112:4880CrossRefGoogle Scholar
  98. 98.
    Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y (1997) Anal Chem 69:1492CrossRefGoogle Scholar
  99. 99.
    Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q (2006) J Phys Chem B 110:4002CrossRefGoogle Scholar
  100. 100.
    Sengupta A, Laucks ML, Davis EJ (2005) Appl Spectrosc 59:1016CrossRefGoogle Scholar
  101. 101.
    Jarvis RM, Goodacre R (2004) Anal Chem 76:40CrossRefGoogle Scholar
  102. 102.
    Jarvis RM, Law N, Shadi IT, O’Brien P, Lloyd JR, Goodacre R (2008) Anal Chem 80:6741CrossRefGoogle Scholar
  103. 103.
    Dijkstra RJ, Scheenen WJJM, Dam N, Roubos EW, Meulen JJt (2007) J Neurosci Meth 159:43CrossRefGoogle Scholar
  104. 104.
    Sengupta A, Thai CK, Sastry MSR, Matthaei JF, Schwartz DT, Davis EJ, Baneyx F (2008) Langmuir 24:2000CrossRefGoogle Scholar
  105. 105.
    Dou X, Jung Y-M, Cao Z-Q, Ozaki Y (1999) Appl Spectrosc 53:1440CrossRefGoogle Scholar
  106. 106.
    Podstawka E, Ozaki Y, Proniewicz LM (2004) Appl Spectrosc 58:570CrossRefGoogle Scholar
  107. 107.
    Podstawka E, Ozaki Y, Proniewicz LM (2004) Appl Spectrosc 58:1147CrossRefGoogle Scholar
  108. 108.
    Podstawka E, Ozaki Y, Proniewicz LM (2008) Langmuir 24:10807CrossRefGoogle Scholar
  109. 109.
    Xu S, Ji X, Xu W, Zhao B, Dou X, Bai Y, Ozaki Y (2005) J Biomed Opt 10:031112/1Google Scholar
  110. 110.
    Tamaru H, Kuwata H, Miyazaki HT, Miyano K (2002) Appl Phys Lett 80:1826CrossRefGoogle Scholar
  111. 111.
    Hao E, Schatz GC (2004) J Chem Phys 120:357CrossRefGoogle Scholar
  112. 112.
    Kobayashi T (1996) J-aggregates. World Scientific, SingaporeGoogle Scholar
  113. 113.
    MacRae EG, Kasha M (1958) J Chem Phys 28:721CrossRefGoogle Scholar
  114. 114.
    Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371CrossRefGoogle Scholar
  115. 115.
    Kasha M (1976) Spectroscopy of the excited state. Plenum, New YorkGoogle Scholar
  116. 116.
    Minoshima K, Taiji M, Misawa K, Kobayashi T (1994) Chem Phys Lett 218:67CrossRefGoogle Scholar
  117. 117.
    Higgins DA, Reid PJ, Barbara PF (1996) J Phys Chem 100:1174CrossRefGoogle Scholar
  118. 118.
    Kuhlbrandt W (1995) Nature 374:497CrossRefGoogle Scholar
  119. 119.
    Akins DL, Özçelik S, Zhu HR, Guo C (1996) J Phys Chem 100:14396Google Scholar
  120. 120.
    Kano H, Saito T, Kobayashi T (2002) J Phys Chem A 106:3445CrossRefGoogle Scholar
  121. 121.
    Ohno O, Kaizu Y, Kobayashi H (1993) J Chem Phys 99:4128CrossRefGoogle Scholar
  122. 122.
    Wang J, Zhang P, He T, Xin H, Liu FC (1988) J Phys Chem 92:1942CrossRefGoogle Scholar
  123. 123.
    Kneipp K, Kneipp H, Rentsch M (1987) J Mol Struc 156:331CrossRefGoogle Scholar
  124. 124.
    Yao H, Kitamura S, Kimura K (2001) Phys Chem Chem Phys 3:4560CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mohammad Kamal Hossain
    • 1
    • 3
  • Yasutaka Kitahama
    • 1
  • Genin Gary Huang
    • 1
  • Xiaoxia Han
    • 2
  • Yukihiro Ozaki
    • 1
  1. 1.Department of Chemistry, School of Science and TechnologyKwansei Gakuin UniversityHyogoJapan
  2. 2.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunChina
  3. 3.School of Chemical and Physical ScienceVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations