Skip to main content
Log in

Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations.

SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10 a–d

Similar content being viewed by others

References

  1. Siebert F, Hildebrandt P (2008) Vibrational spectroscopy in life science. Wiley-VCH, Darmstadt

    Google Scholar 

  2. Stiles PL, Dieringer FA, Shah NC, Van Duyne RP (2008) Annu Rev Anal Chem 1:601

    Article  CAS  Google Scholar 

  3. Otto A (2002) J Raman Spectrosc 33:593

    Article  CAS  Google Scholar 

  4. Yongan Y, Alexander B, Klaus K (2007) J Solid State Electrochem 11:150

    Google Scholar 

  5. Etchegoin PG, Le Ru EC (2008) Phys Chem Chem Phys 10:6079

    Article  CAS  Google Scholar 

  6. Shalaev VM, Sarychev AK (1998) Phys Rev B 57:13265

    Article  CAS  Google Scholar 

  7. Campion A, Kambhampati P (1998) Chem Soc Rev 27:241

    Article  CAS  Google Scholar 

  8. Le Ru EC, Etchegoin PG (2006) Chem Phys Lett 423:63

    Article  CAS  Google Scholar 

  9. Moskovits M, Jeong DH (2004) Chem Phys Lett 397:91

    Article  CAS  Google Scholar 

  10. Kuncicky DM, Prevo BG, Velev OD (2006) J Mat Chem 16:1207

    Article  CAS  Google Scholar 

  11. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  12. Moskovits M (1985) Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  13. Schatz GC, Van Duyne RP (2002) Handbook of vibrational spectroscopy. Wiley, Chichester

    Google Scholar 

  14. Compton AH (1923) Phys Rev 21:483

    Article  CAS  Google Scholar 

  15. Cardona M, Güntherodt G (1984) Light scattering in solids vol IV. Springer, Berlin

    Google Scholar 

  16. Anker JA, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mat 7:442

    Article  CAS  Google Scholar 

  17. Kneipp K, Moskovits M, Kneipp H (2006) Surface-enhanced Raman scattering: physics and applications. Springer, Berlin

    Book  Google Scholar 

  18. Ditlbacher H, Krenn JR, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Appl Phys Lett 80:404

    Article  CAS  Google Scholar 

  19. Stefan AM, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Nat Mat 2:229

    Article  CAS  Google Scholar 

  20. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, Dordrecht

    Book  Google Scholar 

  21. Raether H (1986) Surface plasmons. Springer, New York

    Google Scholar 

  22. Haes J, Van Duyne RP (2004) Expert Rev Mol Diag 4:527

    Article  CAS  Google Scholar 

  23. Itoh T, Biju V, Ishikawa M, Kikkawa Y, Hashimoto K, Ikehata A, Ozaki Y (2006) J Chem Phys 124:134708

    Article  CAS  Google Scholar 

  24. Pettinger B (1986) J Chem Phys 85:7442

    Article  CAS  Google Scholar 

  25. Itoh T, Yoshida K, Biju V, Kikkawa Y, Ishikawa M, Ozaki Y (2007) Phys Rev B 76:085405

    Article  CAS  Google Scholar 

  26. Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121:9932

    Article  CAS  Google Scholar 

  27. Etchegoin P, Liem H, Maher RC, Cohen LF, Brown RJC, Hartigan H, Milton MJT, Gallop JC (2002) Chem Phys Lett 366:115

    Article  CAS  Google Scholar 

  28. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Cond Mat 4:1143

    Article  CAS  Google Scholar 

  29. Otto A (2003) Indian J Phys 77B:63

    CAS  Google Scholar 

  30. Persson N (1981) J Chem Phys Lett 82:561

    Article  CAS  Google Scholar 

  31. Otto A (1991) J Raman Spectrosc 22:743

    Article  CAS  Google Scholar 

  32. Maier SA, Atwater HA (2005) J Appl Phys 98:011101–1

    Article  CAS  Google Scholar 

  33. Zeng J, Jia H, An J, Han X, Wu W, Zhao B, Ozaki Y (2008) J Raman Spec 39:1673

    Article  CAS  Google Scholar 

  34. Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanotoday 2:18

    Google Scholar 

  35. Hossain MK, Shimada T, Kitajima M, Imura K, Okamoto H (2008) Langmuir 24:9241

    Article  CAS  Google Scholar 

  36. Imura K, Okamoto H, Hossain MK, Kitajima M (2005) Chem Lett 35:78

    Article  Google Scholar 

  37. Murphy CJ, Sau TK, Gole AM, Orendroff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) J Phys Chem 109:13857

    CAS  Google Scholar 

  38. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) Nature Mat 7:527

    Google Scholar 

  39. Xia Y, Yin Y, Lu Y, McLellan J (2003) Adv Func Mat 13:907

    Article  CAS  Google Scholar 

  40. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Adv Mater 13:1501

    Article  CAS  Google Scholar 

  41. Wu Y, Livneh T, Zhang YX, Cheng G, Wang J, Tang J, Moskovits M, Stucky GD (2004) Nano Lett 4:2337

  42. Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) ACS Nano 2:708

    Article  CAS  Google Scholar 

  43. Wei A (2006) e-J Surf Sci Nanotech 4:9

    Article  CAS  Google Scholar 

  44. Hossain MK, Shimada T, Kitajima M, Imura K, Okamoto H (2008) J Microsc 229:327

    Article  CAS  Google Scholar 

  45. Olson LG, Uibel RH, Harris JM (2004) Appl Spectrosc 58:1394

    Article  CAS  Google Scholar 

  46. Bulte JWM, Modo MMJ (2008) Nanoparticles in biomedical imaging: emerging technologies and applications. Springer, New York.

  47. Imura K, Okamoto H, Hossain MK, Kitajima M (2006) Nano Lett 6:2173

  48. Lu Y, Liu GL, Lee LP (2005) Nano Lett 5:5

  49. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) J Am Chem Soc 125:588

    Google Scholar 

  50. Itoh T, Hashimoto K, Ozaki Y (2003) Appl Phys Lett 83:2274

    Article  CAS  Google Scholar 

  51. Han XX, Kitahama Y, Tanaka Y, Guo J, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:6567

    Article  CAS  Google Scholar 

  52. Itoh T, Hashimoto K, Biju V, Ishikawa M, Wood BR, Ozaki Y (2006) J Phys Chem B 110:9579

    Article  CAS  Google Scholar 

  53. Shimada T, Imura K, Hossain MK, Kitajima M, Okamoto H (2008) J Phys Chem C 112:4033

    Article  CAS  Google Scholar 

  54. Wang H, Kundu J, Halas NJ (2007) Angew Chem Int Ed 46:9040

    Article  CAS  Google Scholar 

  55. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1

    Article  CAS  Google Scholar 

  56. Nicolai SHA, Rubim JC (2003) Langmuir 19:4291

    Article  CAS  Google Scholar 

  57. Chao Y, Zhou Q, Li Y, Yan Y, Wu Y, Zheng J (2007) J Phys Chem C 111:6990

    Article  CAS  Google Scholar 

  58. Aroca RF, Constantino CJL (2000) Langmuir 16:5425

    Article  CAS  Google Scholar 

  59. Drachev VP, Nashine VC, Thoreson MD, Ben-Amotz D, Davisson VJ, Shalaev VM (2005) Langmuir 21:8368

    Article  CAS  Google Scholar 

  60. Li X, Xu W, Zhang J, Jia H, Yang B, Zhao B, Li B, Ozaki Y (2004) Langmuir 20:1298

    Article  CAS  Google Scholar 

  61. Wei G, Wang L, Liu Z, Song Y, Sun L, Yang T, Li Z (2005) J Phys Chem B 109:23941

    Article  CAS  Google Scholar 

  62. Xue G, Dong J (1991) Anal Chem 63:2393

    Article  CAS  Google Scholar 

  63. Ni F, Cotton TM (1986) Anal Chem 58:3159

    Article  CAS  Google Scholar 

  64. Wu Y, Zhao B, Xu W, Li B, Jung YM, Ozaki Y (1999) Langmuir 15:4625

    Article  CAS  Google Scholar 

  65. Li F, Cao Q, Lu Y, Xue G (1997) Spectrosc Lett 30:451

    Article  CAS  Google Scholar 

  66. Song W, Li W, Cheng Y, Jia H, Zhao G, Zhou Y, Yang B, Xu W, Tian W, Zhao B (2006) J Raman Spectrosc 37:755

  67. Ruan W, Wang C, Ji N, Lu Z, Zhou T, Zhao B, Lombardi JR (2008) Langmuir 24:8417

    Article  CAS  Google Scholar 

  68. Yao JL, Xu X, Wu DY, Xie Y, Ren B, Tian ZQ, Pan GP, Sun DM, Xue KH (2000) Chem Commun 1627

  69. Carney J, Braven H, Seal J, Whitworth E (2006) IVD Technol 11:41

    Google Scholar 

  70. Han XX, Jia HY, Wang YF, Lu ZC, Wang CX, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:2799

    Article  CAS  Google Scholar 

  71. Han XX, Cai LJ, Guo J, Wang CX, Ruan WD, Han WY, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:3020

    Article  CAS  Google Scholar 

  72. Hossain MK, Shibamoto K, Ishioka K, Kitajima M, Mitani T, Nakashima S (2007) J Lumin 122–123:792

  73. Lee PC, Meisel DJ (1982) J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  74. Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos JV (2005) Adv Colloid Interf Sci 116:45

    CAS  Google Scholar 

  75. Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) Adv Mater 19:3100

    Article  CAS  Google Scholar 

  76. Tian ZQ (2005) J Raman Spectrosc 36:466

    Article  CAS  Google Scholar 

  77. Niemeyer CM, Mirkin CA (2004) Nanobiotechnology: concepts, applications and perspectives. Wiley, Denmark

    Google Scholar 

  78. Ooka AK, Kuhar KA, Cho N, Garrel RL (1999) Biospectrosc 5:9

    Google Scholar 

  79. Arenas JF, Castro JL, Otero JC, Marcos JI (2001) Biopolymers 62:241

    Article  CAS  Google Scholar 

  80. Suh JS, Moskovits M (1986) J Am Chem Soc 108:4711

    Article  CAS  Google Scholar 

  81. Singha A, Dasgupta S, Roy A (2006) Biophys Chem 120:215

    Article  CAS  Google Scholar 

  82. Herne TM, Ahern AM, Garrell RL (1991) J Am Chem Soc 113:846

    Article  CAS  Google Scholar 

  83. Podstawka E, Borszowska R, Grabowska M, Drag M, Kafarski P, Proniewicz LM (2005) Surf Sci 599:207

    Article  CAS  Google Scholar 

  84. Stosch R, Henrion A, Schiel D, Guttler B (2005) Anal Chem 77:7386

    Article  CAS  Google Scholar 

  85. Giese B, McGaughton D (2002) J Phys Chem B 106:1461

    Article  CAS  Google Scholar 

  86. Sakar J, Chowdhury J, Ghosh M, De R, Talapatra GB (2005) J Phys Chem B 109:12861

    Article  CAS  Google Scholar 

  87. Nirode WF, Devault GL, Sepaniak J (2000) Anal Chem 72:1866

    Article  CAS  Google Scholar 

  88. Kneipp K, Wang Y, Dasari RR, Feld MS (1995) Spectrochim Acta 51A:481

    CAS  Google Scholar 

  89. Faulds K, Stewart L, Smith WE, Graham D (2005) Talanta 67:667

    Article  CAS  Google Scholar 

  90. Bell SEJ, Sirimuthu NMS (2006) J Am Chem Soc 128:15580

    Article  CAS  Google Scholar 

  91. Faulds K, Smith WE, Graham D (2004) Anal Chem 76:412

    Article  CAS  Google Scholar 

  92. Breuzard G, Millot J-M, Riou J-F, Manfait M (2003) Anal Chem 75:4305

    Article  CAS  Google Scholar 

  93. Rospendowski B, Kelly K, Wolf CR, Smith WE (1991) J Am Chem Soc 113:1217

    Article  CAS  Google Scholar 

  94. Bizzarri AR, Cammostraro S (2002) Appl Spectrosc 56:1531

    Article  CAS  Google Scholar 

  95. Feng M, Tachikawa H (2008) J Am Chem Soc 130:7443

    Article  CAS  Google Scholar 

  96. Kumar GVP, Reddy BAA, Arif M, Kundu TK, Narayana C (2006) J Phys Chem B 110:16787

    Article  CAS  Google Scholar 

  97. Pavel I, McCarney E, Elkhaled A, Morrill A, Plaxco K, Moskovits M (2008) J Phys Chem C 112:4880

    Article  CAS  Google Scholar 

  98. Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y (1997) Anal Chem 69:1492

    Article  CAS  Google Scholar 

  99. Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q (2006) J Phys Chem B 110:4002

    Article  CAS  Google Scholar 

  100. Sengupta A, Laucks ML, Davis EJ (2005) Appl Spectrosc 59:1016

    Article  CAS  Google Scholar 

  101. Jarvis RM, Goodacre R (2004) Anal Chem 76:40

    Article  CAS  Google Scholar 

  102. Jarvis RM, Law N, Shadi IT, O’Brien P, Lloyd JR, Goodacre R (2008) Anal Chem 80:6741

    Article  CAS  Google Scholar 

  103. Dijkstra RJ, Scheenen WJJM, Dam N, Roubos EW, Meulen JJt (2007) J Neurosci Meth 159:43

    Article  CAS  Google Scholar 

  104. Sengupta A, Thai CK, Sastry MSR, Matthaei JF, Schwartz DT, Davis EJ, Baneyx F (2008) Langmuir 24:2000

    Article  CAS  Google Scholar 

  105. Dou X, Jung Y-M, Cao Z-Q, Ozaki Y (1999) Appl Spectrosc 53:1440

    Article  CAS  Google Scholar 

  106. Podstawka E, Ozaki Y, Proniewicz LM (2004) Appl Spectrosc 58:570

    Article  CAS  Google Scholar 

  107. Podstawka E, Ozaki Y, Proniewicz LM (2004) Appl Spectrosc 58:1147

    Article  CAS  Google Scholar 

  108. Podstawka E, Ozaki Y, Proniewicz LM (2008) Langmuir 24:10807

    Article  CAS  Google Scholar 

  109. Xu S, Ji X, Xu W, Zhao B, Dou X, Bai Y, Ozaki Y (2005) J Biomed Opt 10:031112/1

  110. Tamaru H, Kuwata H, Miyazaki HT, Miyano K (2002) Appl Phys Lett 80:1826

    Article  CAS  Google Scholar 

  111. Hao E, Schatz GC (2004) J Chem Phys 120:357

    Article  CAS  Google Scholar 

  112. Kobayashi T (1996) J-aggregates. World Scientific, Singapore

    Google Scholar 

  113. MacRae EG, Kasha M (1958) J Chem Phys 28:721

    Article  Google Scholar 

  114. Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371

    Article  CAS  Google Scholar 

  115. Kasha M (1976) Spectroscopy of the excited state. Plenum, New York

    Google Scholar 

  116. Minoshima K, Taiji M, Misawa K, Kobayashi T (1994) Chem Phys Lett 218:67

    Article  CAS  Google Scholar 

  117. Higgins DA, Reid PJ, Barbara PF (1996) J Phys Chem 100:1174

    Article  CAS  Google Scholar 

  118. Kuhlbrandt W (1995) Nature 374:497

    Article  Google Scholar 

  119. Akins DL, Özçelik S, Zhu HR, Guo C (1996) J Phys Chem 100:14396

    Google Scholar 

  120. Kano H, Saito T, Kobayashi T (2002) J Phys Chem A 106:3445

    Article  CAS  Google Scholar 

  121. Ohno O, Kaizu Y, Kobayashi H (1993) J Chem Phys 99:4128

    Article  CAS  Google Scholar 

  122. Wang J, Zhang P, He T, Xin H, Liu FC (1988) J Phys Chem 92:1942

    Article  CAS  Google Scholar 

  123. Kneipp K, Kneipp H, Rentsch M (1987) J Mol Struc 156:331

    Article  CAS  Google Scholar 

  124. Yao H, Kitamura S, Kimura K (2001) Phys Chem Chem Phys 3:4560

    Article  CAS  Google Scholar 

Download references

Acknowledgement

A KAKENHI (Grant-in-Aid for Scientific Research) on the Priority Area “Strong Photon-Molecule Coupling Fields (No. 470, 20043032)” from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Ozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.K., Kitahama, Y., Huang, G.G. et al. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal Bioanal Chem 394, 1747–1760 (2009). https://doi.org/10.1007/s00216-009-2762-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2762-4

Keywords

Navigation