Skip to main content

Advertisement

Log in

Quantification of luminally released serotonin in rat proximal colon by capillary electrophoresis with laser-induced fluorescence detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) plays vital roles in regulating gastrointestinal functions. Thus, the detection of 5-HT in the gastrointestinal tract is of great importance for biomedical research, medical diagnosis, and pharmaceutical therapy. This paper presents a simple, sensitive, and fast method for the quantification of luminally released serotonin in the feces and tissues of the rat proximal colon by means of capillary electrophoresis with laser-induced fluorescence detection. 5-Carboxyfluorescein N-succinimidyl ester was used for precolumn derivatization of serotonin. The optimal separation and detection conditions were obtained with an electrophoretic buffer containing 60 mM borate (pH 8.90) and an air-cooled argon-ion laser (excitation at 488 nm, emission at 520 nm). The serotonin concentrations in the feces and tissues of proximal colons were analyzed with this method, and the average values of serotonin in the feces samples were 1.951 ± 0.446 ng/mg (male) and 2.095 ± 0.533 ng/mg (female) and 1.397 ± 0.267 ng/mg in rat proximal colon tissues. The results demonstrate that this method can accurately determine luminally released 5-HT in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gerson MD, Tack J (2007) The serotonin signalling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    Article  Google Scholar 

  2. Kim DY, Camilleri M (2000) Serotonin: a mediator of the brain-gut connection. Am J Gastroenterol 95:2698–2709

    CAS  Google Scholar 

  3. Martel F, Monteiro R, Lemos C (2003) Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transporter (SERT). J Pharmacol Exp Ther 306:355–362

    Article  CAS  Google Scholar 

  4. Martel F, Monteiro R, Lemos C, Vieira-Coelho MA (2004) In vitro and in vivo effect of fluoxetine on the permeability of 3H-serotonin across rat intestine. Can J Physiol Pharmacol 82:940–950

    Article  CAS  Google Scholar 

  5. Cooke HJ, Montakhab M, Wade PR, Wood JD (1983) Transmural fluxes of 5-hydroxytryptamine in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 244:G421–G425

    CAS  Google Scholar 

  6. Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T (2003) Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Comp Physiol 284:R1269–R1276

    CAS  Google Scholar 

  7. Nakade Y, Fukuda H, Iwa M, Tsukamoto K, Yanagi H, Yamamura T, Mantyh C, Pappas TN, Takahashi T (2007) Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT3 receptors in conscious rats. Am J Physiol Gastrointest Liver Physiol 292:G1037–G1044

    Article  CAS  Google Scholar 

  8. Bertrand PP (2006) Real-time measurement of serotonin release and motility in guinea pig ileum. J Physiol 577:689–704

    Article  CAS  Google Scholar 

  9. Hindberg I (1984) An improved specific and sensitive radio enzymatic method for determination of serotonin concentrations in biological fluids (radio enzymatic serotonin method). Scand J Clin Lab Invest 44:47–51

    Article  CAS  Google Scholar 

  10. Terenina NB (1988) Spectrofluorimetric determination of biogenic amines (serotonin, dopamine) in Metechinorhynchus salmonis (Acanthocephala). Parazitologiia 22:476–480

    CAS  Google Scholar 

  11. Karakulova IuV, Shutov AA (2006) Quantitative determination of serum serotonin in the diagnosis of tension headache. Klin Lab Diagn (1):9–10

  12. Harenberg J, Huhle G, Giese C, Wang LC, Feuring M, Song XH, Hoffmann U (2000) Determination of serotonin release from platelets by enzyme immunoassay in the diagnosis of heparin-induced thrombocytopenia. Br J Haematol 109:182–186

    Article  CAS  Google Scholar 

  13. Ganschow I, Benn HP, Fischer R, Cassens U, Dittmer R, Kuhnl P (1994) Enzyme immunoassay for the determination of serotonin in stored platelet concentrates. Beitr Infusionsther Transfusionsmed 32:428–430

    CAS  Google Scholar 

  14. Wu K, Fei J, Hu S (2003) Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal Biochem 318:100–106

    Article  CAS  Google Scholar 

  15. Kato N, Kojima T, Yoshiyagawa S, Ohta H, Toriba A, Nishimura H, Hayakawa K (2007) Rapid and sensitive determination of tryptophan, serotonin and psychoactive tryptamines by thin-layer chromatography/fluorescence detection. J Chromatogr A 1145:229–233

    Article  CAS  Google Scholar 

  16. Beck O, Wallen NH, Broijersen A, Larsson PT, Hjemdahl P (1993) On the accurate determination of serotonin in human plasma. Biochem Biophys Res Commun 196:260–266

    Article  CAS  Google Scholar 

  17. Hayashi T, Shimamura M, Matsuda F, Minatogawa Y, Naruse H, Iida Y (1986) Sensitive determination of deuterated and non-deuterated tryptophan, tryptamine and serotonin by combined capillary gas chromatography and negative ion chemical ionization mass spectrometry. J Chromatogr 383:259–269

    Article  CAS  Google Scholar 

  18. Oshima S, Fujimura M, Fukimiya M (1999) Changes in number of serotonin-containing cells and serotonin levels in the intestinal mucosa of rats with colitis induced by dextran sodium sulfate. Histochem Cell Biol 112:257–263

    Article  CAS  Google Scholar 

  19. Sasaki T, Fukushima T, Ohishi M, Toyo’oka T (2008) Development of a 6-hydroxychroman-based derivatization reagent: application to the analysis of 5-hydroxytryptamine and catecholamines by using high performance liquid chromatography with electrochemical detection. Biomed Chromatogr 22:888–899

    Article  CAS  Google Scholar 

  20. Huang T, Shoup RE, Kissinger PT (1990) A new microbore column for determination of dopamine, serotonin and other compounds in microdialysates. Current Separations 9:139

    CAS  Google Scholar 

  21. Chaua RM, Bhavik AP (2008) Determination of serotonin, melatonin and metabolites in gastrointestinal tissue using high-performance liquid chromatography with electrochemical detection. Biomed Chromatogr 23:175–181 10.1002/bmc.1100

    Article  Google Scholar 

  22. Tsukamoto K, Ariga H, Mantyh C, Pappas TN, Yanagi H, Yamamura T, Takahashi T (2007) Luminally released serotonin stimulates colonic. motility and accelerates colonic transit in rats. Am J Physiol 293:R64–R69

    Article  CAS  Google Scholar 

  23. Benturquia N, Couderc F, Sauvinet V, Orset C, Parrot S, Bayle C, Renaud B, Denoroy L (2005) Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection. Electrophoresis 26:1071–1079

    Article  CAS  Google Scholar 

  24. Wallingford RA, Ewing AG (1989) Separation of serotonin from catechols by capillary zone electrophoresis with electrochemical detection. Anal Chem 61:98–100

    Article  CAS  Google Scholar 

  25. Chen G, Cheng J, Ye J (2001) Application of a novel micro-injector in the determination of indole derivatives in the rat pineal gland by capillary electrophoresis with electrochemical detection. Fresenius J Anal Chem 370:930–934

    Article  CAS  Google Scholar 

  26. Jin W, Jin L, Shi G, Ye J (1999) Determination of monoamine transmitters and their metabolites by capillary electrophoresis with electrochemical detection. Anal Chim Acta 382:33–37

    Article  CAS  Google Scholar 

  27. Chen Z, Wu J, Baker GB, Parent M, Dovichi NJ (2001) Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. J Chromatogr A 914:293–298

    Article  CAS  Google Scholar 

  28. Du M, Flanigan V, Ma Y (2004) Simultaneous determination of polyamines and catecholamines in PC-12 tumor cell extracts by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 25:1496–1502

    Article  CAS  Google Scholar 

  29. Román DA, Carretero AS, Blanco CC, Gutiérrez AF (2004) Subminute and sensitive determination of the neurotransmitter serotonin in urine by capillary electrophoresis with laser-induced fluorescence detection. Biomed Chromatogr 18:422–426

    Article  Google Scholar 

  30. Lau SK, Zaccardo F, Little M, Banks P (1998) Nanomolar derivatizations with 5-carboxyfluorescein succinimidyl ester for fluorescence detection in capillary electrophoresis. J Chromatogr A 809:203–210

    Article  Google Scholar 

  31. Banks PR, Paquette DM (1995) Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis. Bioconjugugate Chem 6:447–458

    Article  CAS  Google Scholar 

  32. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  CAS  Google Scholar 

  33. Wehry EL (1990) Effects of molecular structure on fluorescence and. phosphorescence. In: Guilbault GG (ed) Practical fluorescence. Dekker, New York, p 135

    Google Scholar 

  34. Zhang JY, Chen XG, Hu ZD, Ma X (2002) Quantification of noradrenaline and dopamine in Portulaca oleracea L. by capillary electrophoresis with laser-induced fluorescence detection. Anal Chim Acta 471:203–209

    Article  CAS  Google Scholar 

  35. Křivánková L, Březková M, Gebauer P, Boček P (2004) Importance of the counterion in optimization of a borate electrolyte system for analyses of anions in samples with complex matrices performed by capillary zone electrophoresis. Electrophoresis 25:3406–3415

    Article  Google Scholar 

  36. Santiago JS, Cassou H (2006) Capillary electrophoresis determination of biogenic amines by field-amplified sample stacking and in-capillary derivatization. Electrophoresis 27:474–483

    Article  Google Scholar 

  37. Cao LW (2007) Determination of catecholamines and serotonin by micellar electrokinetic chromatography with laser-induced fluorescence detection. Biomed Chromatogr 21:708–715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Hong Kong Jockey Club Institute of Chinese Medicine (JCICM-4-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-xiang Bian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Sd., Tian, Sl., Xu, Hx. et al. Quantification of luminally released serotonin in rat proximal colon by capillary electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem 393, 2059–2066 (2009). https://doi.org/10.1007/s00216-009-2655-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2655-6

Keywords

Navigation