Skip to main content
Log in

The transformation of phenyltin species during sample preparation of biological tissues using multi-isotope spike SSID-GC-ICPMS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A multi-isotope spike species-specific isotope dilution (MI-SSID) calibration strategy in connection with gas chromatography-inductively coupled plasma mass spectrometry was applied to evaluate different extraction procedures for the speciation analysis of phenyltin (PhT) compounds in biological materials: mussel tissue BCR CRM-477 and fish tissue NIES-11. Three different isotope-enriched PhT compounds, 118Sn-enriched monophenyltin (MPhT), 122Sn-enriched diphenyltin (DPhT), and 124Sn-enriched triphenyltin (TPhT), were used for the preparation of spikes to follow and correct for six possible interconversion reactions between PhT species that can take place in a sample. The acidity of the extractant, the presence of complexing reagents, and the use of ultrasonic or microwave agitation were found to affect the degradation of PhT compounds. No formation of PhTs through phenylation and negligible degradation of MPhT to inorganic tin were observed under the conditions investigated. The degree of degradation increased with increased acidity of extractant and when ultrasonication or microwave agitation was used. Under relatively mild extraction conditions, the degradation factors for DPhT and TPhT in the two reference materials studied were found, using MI-SSID, to be between 10 and 55% and 2 and 10%, respectively. Using the degradation factors, we calculated corrected concentration values for the organotin species. When microwave extraction at high power output was used, hydrogen radicals were formed that can enhance the degradation of DPhT and TPhT. The hydrogen radicals were trapped using N-tert-butyl-α-phenylnitrone and detected by electron spin resonance spectrometry. The effect of different extraction parameters on the degradation of PhT compounds in biological samples is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pereiro IR, Schmitt VO, Szpunar J, Donard OFX, Lobinski R (1996) Anal Chem 68:4135–4140

    Article  CAS  Google Scholar 

  2. Kumar SJ, Tesfalidet S, Snell JP, Van DN, Frech W (2004) J Anal At Spectrom 19:368–372

    Article  CAS  Google Scholar 

  3. Pellegrino C, Massanisso P, Morabito R (2000) Trends Anal Chem 19:97–106

    Article  CAS  Google Scholar 

  4. Abalos M, Bayona JM, Quevauviller P (1998) Appl Organomet Chem 12:541–549

    Article  CAS  Google Scholar 

  5. Kumar SJ, Tesfalidet S, Snell J, Frech W (2003) J Anal At Spectrom 18:714–719

    Article  CAS  Google Scholar 

  6. Berg M, Arnold CG, Müller SR, Mühlemann J, Schwarzenbach RP (2001) Environ Sci Technol 35:3151–3157

    Article  CAS  Google Scholar 

  7. Ariese F, Cofino W, Gomez-Ariza JL, Kramer GN, Quevauviller P (1999) J Environ Monit 2:191–196

    Article  Google Scholar 

  8. Alonso IJG, Encinar J, González RP, Sanz-Medel A (2002) Anal Bioanal Chem 373:432–440

    Article  Google Scholar 

  9. Morabito R, Soldati P, de la Calle Gutinas MB, Quevauviller P (1998) Appl Organomet Chem 12:621–634

    Article  CAS  Google Scholar 

  10. Diemer J, Heumann KG (1997) Fresenius J Anal Chem 357:74–79

    Article  CAS  Google Scholar 

  11. Tirez K, Brusten W, Cluyts A, Patyn J, De Brucker N (2003) J Anal At Spectrom 18:922–932

    Article  CAS  Google Scholar 

  12. Reifenhäuser C, Heumann KG (1990) Fresenius J Anal Chem 336:559–563

    Article  Google Scholar 

  13. Minami H, Cai WT, Kusumoto T, Nishikawa K, Zhang Q, Inoue S Atsuya I (2003) Anal Sci 19:1359–1363

    Article  CAS  Google Scholar 

  14. Hinojosa Reyes L, Marchante Gayón JM, Garcıa Alonso JI, Sanz-Medel A (2004) J Anal At Spectrom 19:1230–1235

    Article  CAS  Google Scholar 

  15. Hintelmann H, Evans RD (1997) Fresenius J Anal Chem 358:375–378

    Google Scholar 

  16. Ruiz Encinar J, Monterde Villar MI, Gotor Santamarıa V, Garcia-Alonso JI, Sanz-Medel A (2001) Anal Chem 73:3174–3180

    Article  CAS  Google Scholar 

  17. Qvarnström J, Frech W (2002) J Anal At Spectrom 17:1486–1491

    Article  Google Scholar 

  18. Encinar JR, Rodríguez-Gonzalez P, Alonso JIG, Sanz-Medel A (2002) Anal Chem 74:270–281

    Article  Google Scholar 

  19. Van DN, Muppala SRK, Frech W, Tesfalidet S (2006) Anal Bioanal Chem 386:1505–1513

    Article  Google Scholar 

  20. Rodríguez-Gonzalez P, García Alonso JI, Sanz-Medel A (2004) J Anal At Spectrom 19:767–772

    Article  Google Scholar 

  21. Poperechna N, Heumann KG (2005) Anal Bioanal Chem 383:153–159

    Article  CAS  Google Scholar 

  22. Rodríguez-Gonzalez PR, García Alonso JI, Sanz-Medel A (2005) J Anal At Spectrom 20:1076–1084

    Article  Google Scholar 

  23. Meija J, Yang L, Caruso JA, Mester Z (2006) J Anal At Spectrom 21:1294–1297

    Article  CAS  Google Scholar 

  24. Hintelmann H, Evans RD (1997) Fresenius J Anal Chem 358:378–385

    Article  CAS  Google Scholar 

  25. Navio JA, Cerrillos C, Pradera MA, Morales E, Gomez-Ariza JL (1997) J Photochem Photobiol A 108:59–63

    Article  CAS  Google Scholar 

  26. Mailhot G, Brand N, Astruc M, Bolte M (2002) Appl Organometal Chem 16:27–33

    Article  CAS  Google Scholar 

  27. Rehorek D, Janzen EG (1984) J Organomet Chem 268:135–139

    Article  CAS  Google Scholar 

  28. Palm WU, Kopetzky R, Ruck W (2003) J Photochem Photobiol A 156:105–114

    Article  CAS  Google Scholar 

  29. Navio JA, Cerrillos C, Pradera MA, Morales E, Gomez-Ariza JL (1998) Langmuir 14:388–395

    Article  CAS  Google Scholar 

  30. Nie Z, Tian Q, Liu YP, Liu Y (2006) Magn Reson Chem 44:38–44

    Article  Google Scholar 

  31. Janzen EG, Blackburn J (1969) J Am Chem Soc 91:4481–4490

    Article  CAS  Google Scholar 

  32. Misik V, Riesz P (1994) J Phys Chem 98:1634–1640

    Article  CAS  Google Scholar 

  33. Donard OFX, Lalere B, Martin F, Lobinski R (1995) Anal Chem 67:4250–4254

    Article  CAS  Google Scholar 

  34. Kasal PH, McLeod D (1978) J Phys Chem 82:619–621

    Article  Google Scholar 

  35. Monperrus M, Martin-Doimeadios RCR, Scancar J, Amouroux D, Donard OFX (2003) Anal Chem 75:4095–4102

    Article  CAS  Google Scholar 

  36. Ceulemans M, Witte C, Lobnski R, Adams FC (1994) Appl Organomet Chem 8:451–461

    Article  CAS  Google Scholar 

  37. Chau YK, Yang F, Brown M (1997) Anal Chim Acta 338:51–55

    Article  CAS  Google Scholar 

  38. Wasik A, Ciesielski T (2004) Anal Bioanal Chem 378:1357–1363

    Article  CAS  Google Scholar 

  39. Carlier-Pinasseau C, Astruc A, Lespes G, Astruc M (1996) J Chromatogr A 750:317–325

    Article  CAS  Google Scholar 

  40. Hung TC, Lee TY, Liao TF (1998) Environ Pollut 102197–102203

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon Tesfalidet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van, D.N., Bui, T.T.X. & Tesfalidet, S. The transformation of phenyltin species during sample preparation of biological tissues using multi-isotope spike SSID-GC-ICPMS. Anal Bioanal Chem 392, 737–747 (2008). https://doi.org/10.1007/s00216-008-2316-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2316-1

Keywords

Navigation