Skip to main content
Log in

Preparation, preservation and application of pure isotope-enriched phenyltin species

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method combining liquid/liquid extraction and chromatographic fractionation has been developed for the preparation of pure monophenyltin (MPhT), diphenyltin (DPhT), and triphenyltin (TPhT), synthesized from isotope-enriched Sn metal using phenylation of SnI4 in diethylether (DEE) followed by quenching with HBr and water. After two successive extractions of the aqueous HBr phase with DEE, >99% of both DPhT and TPhT was recovered in the combined DEE phase and 94% of the MPhT remained in the aqueous phase. The MPhT in the aqueous phase was extracted into dichloromethane. The organic phases were vaporized and the PhTs were redissolved in MeOH/water/acetic acid/sodium acetate (59/30/6/8, v/v/v/w), which was also used as storing solution. Aliquots of the two solutions containing either DPhT and TPhT or MPhT were injected into a silica-based C18 column for isolating and purifying single species. The yields of pure MPhT, DPhT, and TPhT, each synthesized from isotope-enriched 118Sn metal, 122Sn metal, and 124Sn metal, were better than 99%. After chromatographic separation, the single phenyltin compounds were mixed to prepare a spike for multiple-isotope species-specific isotope dilution (MI-SSID). MI-SSID was successfully used to determine phenyltin compounds in the certified reference material, mussel tissue BCR CRM-477. At −20 °C, all of the fractionated phenyltin species were stable in the storage solution for at least 197 days. When these standards were stored at 4 °C or 22 °C, 4–6% of the DPhT and TPhT degraded within 27 days. The degradation of DPhT and TPhT increased with the ionic strength and acidity of the storage solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tiano L, Fedeli D, Moretti M, Falcioni G (2001) Appl Organometal Chem 15:575–580

    Article  CAS  Google Scholar 

  2. Moschino V, Marin MG (2002) Appl Organometal Chem 16:175–181

    Article  CAS  Google Scholar 

  3. Horiguchi T, Shiraishi H, Shimizu M, Morita M (1997) Appl Organometal Chem 11:451–455

    Article  CAS  Google Scholar 

  4. Berg M, Arnold CG, Müller SR, Muhlemann J, Schwarzenbach RP (2001) Environ Sci Technol 35:3151–3157

    Article  CAS  Google Scholar 

  5. Huang JH, Matzner E (2004) European J Soil Sci 55:693–698

    Article  CAS  Google Scholar 

  6. Looser PW, Bertschi S, Fent K (1998) Appl Organomet Chem 12:601–611

    Article  CAS  Google Scholar 

  7. Weidenhaupt A, Arnold C, Müller SR, Haderlein SB, Schwarzenbach RP (1997) Environ Sci Technol 31:2603–2609

    Article  CAS  Google Scholar 

  8. Yamaoka Y, Inoue H, Takimura O, Oota S (2001) Appl Organometal Chem 15:757–761

    Article  CAS  Google Scholar 

  9. Huang JH, Matzner E (2004) J Plant Nutr Soil Sci 167:33–38

    Article  CAS  Google Scholar 

  10. Landmeyer J, Tanner T, Watt BE (2004) Environ Sci Technol 38:4106–4112

    Article  CAS  Google Scholar 

  11. Kannan K, Lee R (1996) Environ Toxicol Chem 15:1492–1499

    Article  CAS  Google Scholar 

  12. Looser PW, Berg M, Fent K, Muehlemann J, Schwarzenbach RP (2000) Anal Chem 72:5136–5141

    Article  CAS  Google Scholar 

  13. Chiron S, Roy S, Cottier R, Jeannot R (2000) J Chromatogr A 879:137–145

    Article  CAS  Google Scholar 

  14. Dauchy X, Cottier R, Batel A, Jeannot R, Borsier M (1993) J Chromatogr Sci 31:416–421

    CAS  Google Scholar 

  15. White S, Catterick T, Fairman B, Webb K (1998) J Chromatogr A 794:211–218

    Article  CAS  Google Scholar 

  16. Rosenberg E, Kmetov V, Grasserbauer M (2000) Fresenius J Anal Chem 366:400–407

    Article  CAS  Google Scholar 

  17. Tao H, Rajendran RB, Quetel CR, Nakazato T, Tominaga M, Miyazaki A (1999) Anal Chem 71:4208–4215

    Article  CAS  Google Scholar 

  18. Gomez-Ariza JL, Giraldez I, Morales E, Ariese F, Cofino W, Quevauviller Ph (1999) J Environ Monit 1:197–202

    Article  CAS  Google Scholar 

  19. Morabito R, Soldati P, de la Calle MB, Quevauviller Ph (1998) Appl Organomet Chem 12:621–634

    Article  CAS  Google Scholar 

  20. Van DN, Lindberg R, Frech W (2005) J Anal Atom Spectrom 20:266–272

    Article  CAS  Google Scholar 

  21. Alonso IJ, Encinar J, González P, Sanz-Medel A (2002) Anal Bioanal Chem 373:432–440

    Article  CAS  Google Scholar 

  22. Encinar JR, Gonzalez PR, Alonso JIG, Sanz-Medel A (2002) Anal Chem 74:273–281

    Article  CAS  Google Scholar 

  23. Gonzalez PR, Alonso JIG, Sanz Medel A (2005) J Anal Atom Spectrom 20:1076–1084

    Article  CAS  Google Scholar 

  24. Briche CSJW, Wahlen R, Sturgeon RE (2006) Metrologia 43:08002

    Article  Google Scholar 

  25. Kumar SJ, Tesfalidet S, Snell J, Van DN, Frech W (2004) J Anal Atom Spectrom 19:368–372

    Article  CAS  Google Scholar 

  26. Demuth N, Heumann KG (2001) Anal Chem 73(16):4020–4027

    Article  CAS  Google Scholar 

  27. Sutton PG, Harrington CF, Fairman B, Evans EH, Ebdon L, Catterick T (2000) Appl Organomet Chem 14:691–700

    Article  CAS  Google Scholar 

  28. Pellegrino C, Massanisso P, Morabito R (2000) Trend Anal Chem 19:97–106

    Article  CAS  Google Scholar 

  29. Van DN, Radziuk B, Frech W (2006) J Anal Atom Spectrom 21:708–711

    Google Scholar 

  30. Björn E, Baxter DC, Frech W (2002) J Anal Atom Spectrom 17:1582–1588

    Article  CAS  Google Scholar 

  31. Kumar SJ, Tesfalidet S, Snell J, Frech W (2003) J Anal Atom Spectrom 18:714–719

    Article  CAS  Google Scholar 

  32. Gonzalez PR, Encinar JR, Alonso JIG, Sanz Medel A (2004) J Anal Atom Spectrom 19:685–691

    Article  CAS  Google Scholar 

  33. Qvarnström J, Frech W (2002) J Anal Atom Spectrom 17:1486–1491

    Article  CAS  Google Scholar 

  34. Kadokami K, Uehiro T, Morita M, Fuwa K (1988) J Anal Atom Spectrom 3:187–191

    Article  CAS  Google Scholar 

  35. Simon S, Bueno M, Lespes G, Mench M, Gautier MP (2002) Talanta 57:31–43

    Article  CAS  Google Scholar 

  36. Abalos M, Bayona JM, Quevauviller P (1998) Appl Organomet Chem 12:541–549

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was from the Knut and Alice Wallenberg as well as the Kempe Foundations. Dong Nguyen Van thanks the Ministry of Education and Training, Vietnam. Wolfgang Frech and Solomon Tesfalidet thank the North Sweden Soil Remediation Center (EU Structural Funds and New Objective 1, Contract 113-12534-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon Tesfalidet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen Van, D., Muppala, S.R.K., Frech, W. et al. Preparation, preservation and application of pure isotope-enriched phenyltin species. Anal Bioanal Chem 386, 1505–1513 (2006). https://doi.org/10.1007/s00216-006-0695-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0695-8

Keywords

Navigation