Skip to main content
Log in

Wide mass range trapping using a 7-T internal source matrix-assisted laser desorption/ionization Fourier transform mass spectrometer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A wide mass range trapping experiment using internal source matrix-assisted laser desorption–Fourier transform mass spectrometry (MALDI–FTMS) was evaluated. In this method, the front trap plate potential is ramped up and the rear trap plate potential is simultaneously decreased using a cubic cell to trap ions over a wide range of mass-to-charge ratios. To apply this to MS/MS experiments, a second ion ejection procedure would remove unwanted ions, with the selected remaining ions then fragmented by collision-induced dissociation. In measurements using a 7.2-T unshielded magnet presented here, an approximately equimolar mixture of a set of poly(ethylene glycol) (PEG) species for the ramped measurements had peak areas of 1.0:1.0:1.0:1.0, as did the previously described integral method which gave peak areas of 1.0:1.1:1.0:1.0, in good agreement with the known composition of the samples deposited on the MALDI probe tip. Comparative MALDI–TOF in reflectron mode results were of similar quality for the equimolar mixture, giving a ratio of 1.0:1.0:1.2:0.9. All methods failed to varying degrees when individual PEG compositions of the trial mixture were changed. However, the previously described integral method showed relatively better results for all but the PEG 8000 doubled mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Int J Mass Spectrom Ion Process 78:53–68

    Article  CAS  Google Scholar 

  2. Karas M, Bahr U, Ingendoh A, Hillenkamp F (1989) Angew Chem 101:805–806

    Article  CAS  Google Scholar 

  3. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y (1988) Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  4. Ijames CF, Wilkins CL (1988) J Am Chem Soc 110:2687

    Article  CAS  Google Scholar 

  5. Posthumus MA, Kistemaker PG, Meuzelaar HLC (1978) Anal Chem 50:985–991

    Article  CAS  Google Scholar 

  6. Wilkins CL, Weil DA, Yang CLC, Ijames CF (1985) Anal Chem 570:520–524

    Article  Google Scholar 

  7. Frankevich V, Knochenmuss R, Zenobi R (2002) Int J Mass Spectrom Ion Process 220:11–19

    CAS  Google Scholar 

  8. Fujii T (2000) Mass Spectrom Rev 19:111–138

    Article  CAS  Google Scholar 

  9. Karas M, Gluckmann M, Schafer J (2000) J Mass Spectrom 35:1–12

    Article  CAS  Google Scholar 

  10. Karas M, Kruger R (2003) Chem Rev 103:427–439

    Article  CAS  Google Scholar 

  11. Zenobi R, Knochenmuss R (1998) Mass Spectrom Rev 17:337–366

    Article  CAS  Google Scholar 

  12. Schriemer DC, Li L (1996) Anal Chem 68:2721–2725

    Article  CAS  Google Scholar 

  13. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  14. Downard K (2004) Mass spectrometry: a foundation course. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  15. Belov ME, Nikolaev EN, Harkewicz R, Masselon CD, Alving K, Smith RD (2001) Int J Mass Spectrom 208:205–225

    Article  CAS  Google Scholar 

  16. Riegner DE, Hofstadler SA, Laude DA Jr (1991) Anal Chem 63:261–268

    Article  CAS  Google Scholar 

  17. Bergenkamp S, Menzel C, Hillenkamp F, Dreisewerd K (2002) J Am Soc Mass Spectrom 13:209–220

    Article  Google Scholar 

  18. Gluckmann M, Karas M (1999) J Mass Spectrom 34:467–477

    Article  CAS  Google Scholar 

  19. Karas M, Bahr U, Fournier I, Gluckmann M, Pfenninger A (2003) Int J Mass Spectrom 226:239–248

    Article  CAS  Google Scholar 

  20. Spengler B, Kirsch D (2003) Int J Mass Spectrom 226:71–83

    Article  CAS  Google Scholar 

  21. Jaber AJ, Kaufman J, Liyanage R, Akhmetova E, Marney S, Wilkins CL (2005) J Am Soc Mass Spectrom 16:1772–1780

    Article  CAS  Google Scholar 

  22. Rempel DL, Gross ML (2001) J Am Soc Mass Spectrom 12:296–303

    Article  CAS  Google Scholar 

  23. Martin K, Spickermann J, Räder HJ, Mullen K (1996) Rapid Commun Mass Spectrom 19:1471–1474

    Article  Google Scholar 

  24. Dey M, Castoro JA, Wilkins CL (1995) Anal Chem 67:1575–1579

    Article  CAS  Google Scholar 

  25. Easterling ML, Mize TH, Amster IJ (1997) Int J Mass Spectrom Ion Process 169/170:387–400

    Article  CAS  Google Scholar 

  26. Mize TH, Simonsick WJ Jr, Amster IJ (2003) Eur J Mass Spectrom 9:473–486

    Article  CAS  Google Scholar 

  27. Lin H-Y, Rockwood A, Munson MSB, Ridge DP (1993) Anal Chem 65:2119–2124

    Article  CAS  Google Scholar 

  28. Cerda BA, Breuker K, Horn DM, McLafferty FW (2001) J Am Soc Mass Spectrom 12:565–570

    Article  CAS  Google Scholar 

  29. Cerda BA, Horn DM, Breuker K, Carpenter BK, McLafferty FW (1999) Eur Mass Spectrom 5:335–338

    Article  CAS  Google Scholar 

  30. Cerda BA, Horn DM, Breuker K, McLafferty FW (2002) J Am Chem Soc 124:9287–9291

    Article  CAS  Google Scholar 

  31. Pastor SJ, Wilkins CL (1998) Int J Mass Spectrom 175:81–92

    Article  CAS  Google Scholar 

  32. Yao J, Dey M, Pastor SJ, Wilkins CL (1995) Anal Chem 67:3638–3642

    Article  CAS  Google Scholar 

  33. Hanton SD (2001) Chem Rev 101:527–569

    Article  CAS  Google Scholar 

  34. Montaudo MS (2002) Mass Spectrom Rev 21:108–144

    Article  CAS  Google Scholar 

  35. Peacock PM, McEwen CN (2006) Anal Chem 78:3957–3964

    Article  CAS  Google Scholar 

  36. Scrivens JH, Jackson AT (2000) Int J Mass Spectrom 200:261–276

    Article  CAS  Google Scholar 

  37. Nielsen MWF (1999) Mass Spectrom Rev 18:309–344

    Article  Google Scholar 

  38. Martin R, Spickermann J, Rader HJ, Mullen K (1996) Rapid Commun Mass Spectrom 10:1471–1474

    Article  CAS  Google Scholar 

  39. Selby TL, Wesdemiotis C, Lattimer RP (1994) J Am Soc Mass Spectrom 5:1081–1092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support through National Science Foundation Grant CHE-0455134. We would like to thank Dr. Sabine Borgmann, Dr. Jeffrey J. Jones, and Dr. Rohana Lyianage for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Wilkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miladinovic, S.M., Robotham, S.A. & Wilkins, C.L. Wide mass range trapping using a 7-T internal source matrix-assisted laser desorption/ionization Fourier transform mass spectrometer. Anal Bioanal Chem 392, 585–594 (2008). https://doi.org/10.1007/s00216-008-2251-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2251-1

Keywords

Navigation