Skip to main content
Log in

Analysis of aged sulfadiazine residues in soils using microwave extraction and liquid chromatography tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An efficient extraction of sulfadiazine residues from soils is difficult, as sulfadiazine is known to form quickly sequestering residues. The objective of this study was to optimize an exhaustive extraction for aged residues of sulfadiazine and its two major metabolites, N-acetylsulfadiazine and 4-hydroxysulfadiazine, from soil. For this purpose two representative used agricultural soils (Luvisol, Cambisol) were blended with manure derived from [14C]sulfadiazine-treated pigs and incubated at 10 °C in the laboratory. After different extraction tests with various solvent mixtures (two- to four-component mixtures with water, methanol, acetonitrile, acetone, and/or ethyl acetate), different pH values (pH 4 and 9), and extraction temperatures (up to 200 °C), soil extracts were measured by liquid scintillation counting and liquid chromatography coupled to tandem mass spectrometry. With respect to sulfadiazine yields, stability of soil extracts, and the amount of coextracted matrix, a microwave extraction of soil (15 min, 150 °C) using acetonitrile/water 1:4 (v/v) is the method of choice for the exhaustive extraction of aged sulfadiazine residues from soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Campbell KL (1999) Vet Dermatol 10:205–215

    Article  Google Scholar 

  2. Lamshöft M, Sukul P, Zühlke S, Spiteller M (2007) Anal Bioanal Chem 388:1733–1745

    Article  CAS  Google Scholar 

  3. Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lützhøft HCH, Jørgensen SE (1998) Chemosphere 36:357–394

    Article  Google Scholar 

  4. Jørgensen SE, Halling-Sørensen B (2000) Chemosphere 40:691–699

    Article  Google Scholar 

  5. Kümmerer K (2003) J Antimicrob Chemoth 52:5–7

    Article  CAS  Google Scholar 

  6. Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2007) Environ Pollut. DOI 10.1016/j.envpol.2007.08.020 (in press)

  7. Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2007) Soil Biol Biochem (in press)

  8. Teuber M (2001) Curr Opin Microbiol 4:493–499

    Article  CAS  Google Scholar 

  9. Kümmerer K (2004) J Antimicrob Chemoth 54:311–320

    Article  CAS  Google Scholar 

  10. Kreuzig R, Höltge S (2005) Environ Toxicol Chem 24:771–776

    Article  CAS  Google Scholar 

  11. Blackwell PA, Kay P, Boxall ABA (2007) Chemosphere 67:292–299

    Article  CAS  Google Scholar 

  12. Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ (2007) J Agric Food Chem 55:2677–2682

    Article  CAS  Google Scholar 

  13. Schmidt B, Ebert J, Lamshöft M, Thiede B, Schumacher-Buffel R, Rong J, Corvini P, Schäffer AJ (2008) Environ Sci Health B 43:8–20

    Article  CAS  Google Scholar 

  14. Stoob K, Singer HP, Stettler S, Hartmann N, Mueller SR, Stamm CH (2006) J Chromatogr A 1128:1–9

    Article  CAS  Google Scholar 

  15. Burkhardt M, Stamm C (2007) J Environ Qual 36:588–596

    Article  CAS  Google Scholar 

  16. Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) J Chromatogr A 952:111–120

    Article  CAS  Google Scholar 

  17. Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Environ Toxicol Chem 24:861–868

    Article  CAS  Google Scholar 

  18. Alexander M (2000) Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  19. Gevao B, Semple KT, Jones KC (2000) Environ Pollut 108:3–14

    Article  CAS  Google Scholar 

  20. Laabs V, Amelung W (2005) J Agric Food Chem 53:7184–7192

    Article  CAS  Google Scholar 

  21. Laabs V, Amelung W, Zech W (1999) J Environ Qual 28:1778–1786

    CAS  Google Scholar 

  22. Golet EM, Strehler A, Alder AC, Giger W (2002) Anal Chem 74:5455–5462

    Article  CAS  Google Scholar 

  23. Huang L, Pignatello J (1990) J Assoc Off Anal Chem 73:443–446

    CAS  Google Scholar 

  24. Amelung W, Nikolakis A, Laabs V (2007) J AOAC Int 90:1959–1969

    Google Scholar 

  25. Ismail LI, Hawash S, El Diwani GI (1987) Egypt J Chem 30:457–466

    CAS  Google Scholar 

  26. Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) J Environ Qual 33:1331–1342

    Article  CAS  Google Scholar 

  27. FAO (2006) World reference base for soil resources. World soil resources reports no 103. Food and Agriculture Organization of the United Nations, Rome

  28. Sakurai H, Ishimitsu T (1980) Talanta 27:293–298

    Article  CAS  Google Scholar 

  29. Sparks DL (2003) Environmental soil chemistry. Academic, San Diego

    Google Scholar 

  30. Hartmann N (2003) An extraction method to determine sulfonamide antibiotics in soil. ETH, Zurich Zurich

    Google Scholar 

  31. Kay P, Blackwell PA, Boxall ABA (2005) Chemosphere 60:497–507

    Article  CAS  Google Scholar 

  32. Schnitzer M (1991) Soil Sci 151:41–58

    Article  Google Scholar 

  33. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Anal Chem 68:1033–1039

    Article  CAS  Google Scholar 

  34. Kahle M, Stamm C (2007) Environ Sci Technol 41:132–138

    Article  CAS  Google Scholar 

  35. Srogi K (2006) Anal Lett 39:1261–1288

    Article  CAS  Google Scholar 

  36. Camel V (2000) Trac-Trends Anal Chem 19:229–248

    Article  CAS  Google Scholar 

  37. Pignatello J, Xing B (1996) Environ Sci Technol 30:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ursula Kutsch for her help with laboratory analyses of soil samples, Dr. Mort Canty for proofreading our manuscript, and Bayer CropScience AG for conducting the radioactive sulfadiazine medication experiment. The project was funded by the German Research Foundation (DFG) within the Research Unit FOR566 “Veterinary medicines in soils: Basic research for risk assessment” (AM134/6–2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Förster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, M., Laabs, V., Lamshöft, M. et al. Analysis of aged sulfadiazine residues in soils using microwave extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 391, 1029–1038 (2008). https://doi.org/10.1007/s00216-008-2081-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2081-1

Keywords

Navigation