Skip to main content
Log in

Application of LC and GC hyphenated with mass spectrometry as tool for characterization of unknown derivatives of isoflavonoids

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polyphenols belonging to the class of secondary metabolites of plants and microorganisms play an important role as bioactive food constituents as well as contaminants. Structure elucidation of polyphenols in plant extracts or polyphenol metabolites, especially those arising during biotransformation, still represents a challenge for analytical chemistry. Various approaches have been proposed to utilize fragmentation reactions in connection with mass spectrometry (MS) for structural considerations on polyphenolic targets. We compiled and applied specific liquid chromatography (LC)–electrospray ionization in positive mode [ESI(+)]–tandem MS (MS/MS) and gas chromatography (GC)–(electron impact, EI)–MS/MS fragmentation reactions with a special focus on the analysis of isoflavones, whereby this technique was also found to be extendable to determine further polyphenols. For ESI(+)-MS the basic retro-Diels–Alder (rDA) fragmentation offers information about the substitution pattern in the A- and B-rings of flavonoids and the elimination of a protonated 4-methylenecyclohexa-2,5-dienone (m/z = 107) fragment can be used as a diagnostic tool for many isoflavanones. For GC-(EI)-MS/MS analysis after derivatization of the analytes to their trimethylsilyl ethers, the elimination of methyl radicals, tetramethylsilane groups or the combined loss of two methyl groups can be shown to be specific for certain substitution patterns in polyphenols. The applicability of the fragmentation reactions presented is demonstrated exemplarily for three derivatives of the isoflavone irilone. With the help of these fragmentation reactions of the two MS techniques combined, a reliable identification of polyphenols is possible. Especially in such cases where NMR cannot be utilized owing to low analyte amounts being available or prior to purification, valuable information can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AOH:

alternariol

BIOA:

biochanin A

BSTFA:

N,O-bis(trimethylsilyl)trifluoroacetamide

DAI:

daidzein

DHD:

dihydrodaidzein

DHG:

dihydrogenistein

EI:

electron impact

ESI:

electrospray ionization

ESI(+):

electrospray ionization in positive mode

ESI(−):

electrospray ionization in negative mode

FORM:

formononetin

GC:

gas chromatography

GEN:

genistein

GLY:

glycitein

HFM:

human fecal microflora

IRI:

irilone

IFA:

isoflavane

IFAO:

isoflavanone

IF:

isoflavone

LC:

liquid chromatography

MS:

mass spectrometry

PRUN:

prunetin

rDA:

retro Diels–Alder

TMS:

trimethylsilyl

ZAL:

zearalanol

ZAN:

zearalanone

References

  1. Bingham SA, Atkinson C, Liggins J, Bluck L, Coward A (1998) Br J Nutr 79:393–406

    Article  CAS  Google Scholar 

  2. Kinjo J, Tsuchihashi R, Morito K, Hirose T, Aomori T, Nagao T, Okabe H, Nohara T, Masamune Y (2004) Biol Pharm Bull 27:185–188

    Article  CAS  Google Scholar 

  3. Engelman HM, Alekel DL, Hanson LN, Kanthasamy AG, Reddy MB (2005) Am J Clin Nutr 81:590–596

    CAS  Google Scholar 

  4. van der Schouw YT, Kreijkamp-Kaspers S, Peeters PHM, Keinan-Boker L, Rimm EB, Grobbee DE (2005) Circulation 111:465–471

    Article  Google Scholar 

  5. Wuttke W, Jarry H, Seidlova-Wuttke D (2007) Ageing Res Rev 6:150–188

    Article  CAS  Google Scholar 

  6. Wu Q, Wang M, Simon JE (2003) J Chromatogr A 1016:195–209

    Article  CAS  Google Scholar 

  7. Heinonen SM, Wahala K, Adlercreutz H (2004) J Agric Food Chem 52:6802–6809

    Article  CAS  Google Scholar 

  8. Setchell KD, Brown NM, Lydeking-Olsen E (2002) J Nutr 132:3577–3584

    CAS  Google Scholar 

  9. Ruefer CE, Maul R, Donauer E, Fabian EJ, Kulling SE (2007) Mol Nutr Food Res 51:813–823

    Article  CAS  Google Scholar 

  10. Horman I, Viani R (1971) Org Mass Spectrom 5:203–219

    Article  CAS  Google Scholar 

  11. Smith GG, Djerassi C (1971) Org Mass Spectrom 5:487–489

    Article  CAS  Google Scholar 

  12. Cimino CO, Shelnutt SR, Ronis MJ, Badger TM (1999) Clin Chim Acta 287:69–82

    Article  CAS  Google Scholar 

  13. Anonymous (2006) Homöopathisches Arzneibuch. Deutscher Apotheker, Stuttgart

    Google Scholar 

  14. Kulling SE, Honig DM, Simat TJ, Metzler M (2000) J Agric Food Chem 48:4963–4972

    Article  CAS  Google Scholar 

  15. Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J (2001) J Am Soc Mass Spectrom 12:707–715

    Article  CAS  Google Scholar 

  16. Barbuch RJ, Coutant JE, Welsh MB, Setchell KDR (1989) Biomed Environ Mass Spectrom 18:973–977

    Article  CAS  Google Scholar 

  17. Antignac JP, Cariou R, Le Bizec B, Cravedi JP, Andre F (2003) Rapid Commun Mass Spectrom 17:1256–1264

    Article  CAS  Google Scholar 

  18. Parmar VS, Sanduja SK, Jha NH, Kukla AS (1985) Org Mass Spectrom 20:265–266

    Article  CAS  Google Scholar 

  19. Zhang L, Xu L, Xiao S-S, Liao Q-F, Li Q, Liang J, Chen X-H, Bi K-S (2007) J Pharm Biomed Anal 44:1019–1028

    Article  CAS  Google Scholar 

  20. Creaser CS, Koupaiabyazani MR, Stephenson GR (1991) Org Mass Spectrom 26:157–160

    Article  CAS  Google Scholar 

  21. Hvattum E, Ekeberg D (2003) J Mass Spectrom 38:43–49

    Article  CAS  Google Scholar 

  22. March RE, Miao X-S, Metcalfe CD, Stobiecki M, Marczak L (2004) Int J Mass Spectrom 232:171–183

    Article  CAS  Google Scholar 

  23. Rufer CE, Glatt H, Kulling SE (2006) Drug Metab Dispos 34:51–60

    Article  Google Scholar 

  24. Locati D, Morandi S, Cupisti A, Ghiadoni L, Arnoldi A (2005) Rapid Commun Mass Spectrom 19:3473–3481

    Article  CAS  Google Scholar 

  25. Heinonen S, Wahala K, Adlercreutz H (1999) Anal Biochem 274:211–219

    Article  CAS  Google Scholar 

  26. Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY (1993) Clin Chim Acta 223:9–22

    Article  CAS  Google Scholar 

  27. Grace PB, Taylor JI, Botting NP, Fryatt T, Oldfield MF, Bingham SA (2003) Anal Biochem 315:114–21

    Article  CAS  Google Scholar 

  28. Tekel J, Daeseleire E, Heeremans A, van Peteghem C (1999) J Agric Food Chem 47:3489–3494

    Article  CAS  Google Scholar 

  29. Porter PM, Banwart WL, Hassett JJ (1985) Environ Exp Bot 25:229–232

    Article  CAS  Google Scholar 

  30. Pfeiffer E, Schebb NH, Podlech J, Metzler M (2007) Mol Nutr Food Res 51:307–316

    Article  CAS  Google Scholar 

  31. Pfeiffer E, Heyting A, Metzler M (2007) Mol Nutr Food Res 51:867–871

    Article  CAS  Google Scholar 

  32. Creaser CS, Koupai-Abyazani MR, Stephenson GR (1992) Analyst 117:1105–1109

    Article  CAS  Google Scholar 

  33. Heinonen SM, Hoikkala A, Wahala K, Adlercreutz H (2003) J Steroid Biochem Mol Biol 87:285–299

    Article  CAS  Google Scholar 

  34. Woodward MD (1981) Phytochemistry 20:532–534

    Article  CAS  Google Scholar 

  35. Castagnetta LA, Granata OM, Arcuri FP, Polito LM, Rosati F, Cartoni GP (1992) Steroids 57:437–443

    Article  CAS  Google Scholar 

  36. Atta ur R, Nasim S, Baig I, Jalil S, Orhan I, Sener B, Choudhary MI (2003) J Ethnopharmacol 86:177–180

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Studienstiftung des deutschen Volkes (Bonn, Germany) in form of a Ph.D. scholarship for N.H.S. Further we would like to thank A. Braune at the Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke for carrying out the HFM incubations and initial cleanup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine E. Kulling.

Additional information

Ronald Maul and Nils Helge Schebb contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM

(PDF 122 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maul, R., Schebb, N.H. & Kulling, S.E. Application of LC and GC hyphenated with mass spectrometry as tool for characterization of unknown derivatives of isoflavonoids. Anal Bioanal Chem 391, 239–250 (2008). https://doi.org/10.1007/s00216-008-1884-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1884-4

Keywords

Navigation