Skip to main content
Log in

Phytochemical analysis of isoflavonoids using liquid chromatography coupled with tandem mass spectrometry

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Isoflavonoids are the biologically active secondary metabolites of plants that are being used for several health promoting and restoring effects mediated through different pathways. Isoflavonoids are structurally similar to estrogens due to which also known as phytoestrogens and have shown potent estrogenic and anti-estrogenic activity. Association with large biological activity lead to the need of rapid, sensitive and precise quantitation of different isoflavonoids in different plant extracts, food materials and biological matrices as the biological activities mainly depends on the quantities and nature of isoflavonoids present in them. The characterisation, standardisation and quantification of herbal extracts or food products require techniques that are highly selective, sensitive and also provide mass measurement precisions and structural information. Liquid chromatography with tandem mass spectroscopy has made it possible to analyse and characterize several constituents and their metabolites in a single run along with high selectivity and sensitivity. In this review, we have summarised the application of LC–MS/MS for the identification and quantification of isoflavonoids reported for various plant extracts and food products along with their general extraction procedures and factors affecting extraction providing a view towards the conditions used for their analysis. The most suitable and widely acceptable extraction solvent system for the isoflavonoids is methanol or ethanol in combination with water ranging from 40 to 60 % organic solvent based on the type of tissues and the isoflavonoids to be extracted by different extraction techniques. ESI ionization with Q-TOF MS was the most useful detection system for the characterisation and quantification of the diverse isoflavonoids with molecular insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

CHS:

Chalcone synthase

CID:

Collision induced dissociation

DAD:

Diode array detector

DHB:

2,5-Dihydroxybenzoic acid

ECD:

Electron capture dissociation

ESI:

Electro spray ionization

EST:

Expressed sequence tag

FWHM:

Full peak width at one-half maximum

HPLC:

High performance liquid chromatography

HPLC–MS:

High performance liquid chromatography coupled with mass spectrometer

IFS:

Isoflavone synthase

ILUAE:

Ionic liquid based ultrasonic assisted extraction

IT:

Ion trap

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption

MS:

Mass spectroscopy

MS/MS:

Tandem mass spectroscopy

NMR:

Nuclear magnetic resonance spectroscopy

PDA:

Photodiode array

PLE:

Pressurized liquid extraction

Q-TOF:

Quardrupole time-of flight mass spectrometer

rDA:

retro-Diels–Alder

RP-HPLC:

Reverse-phase liquid chromatography

SFE:

Supercritical fluid extraction

SPE:

Solid phase extraction

SPME:

Solid-phase micro extraction

SRM:

Selected reaction monitoring

TLC:

Thin layer chromatography

UAE:

Ultrasound assisted extraction

UHPLC:

Ultra high performance liquid chromatography

UV:

Ultraviolet–Visible spectroscopy

References

  • Abrankó L, García-Reyes JF, Molina-Díaz A (2011) In-source fragmentation and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-of-flight mass spectrometry. J Mass Spectrom 46(5):478–488

    PubMed  Google Scholar 

  • Adlercreutz H, Mazur W, Stumpf K et al (2000) Food containing phytoestrogens, and breast cancer. BioFactors 12(1–4):89–93

    CAS  Google Scholar 

  • Aguiar CL, Baptista AS, Alencar SM et al (2007) Analysis of isoflavonoids from leguminous plant extracts by RPHPLC/DAD and electrospray ionization mass spectrometry. Int J Food Sci Nutr 58(2):116–124

    CAS  PubMed  Google Scholar 

  • Anthony MS (2000) Soy and cardiovascular disease: cholesterol lowering and beyond. J Nutr 130(3):662S–663S

    CAS  PubMed  Google Scholar 

  • Aussenac T, Lacombe S, Daydé J (1998) Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: effects of variety and environment. Am J Clin Nutr 68(6):1480S–1485S

    CAS  PubMed  Google Scholar 

  • Bajer T, Adam M, Galla L et al (2007) Comparison of various extraction techniques for isolation and determination of isoflavonoids in plants. J Sep Sci 30(1):122–127

    CAS  PubMed  Google Scholar 

  • Barnes S (1998) Evolution of the health benefits of soy isoflavones. Proc Soc Exp Biol Med 217(3):386–392

    CAS  PubMed  Google Scholar 

  • Barnes S, Kirk M, Coward L (1994) Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry. J Agric Food Chem 42(11):2466–2474

    CAS  Google Scholar 

  • Barnes S, Coward L, Kirk M et al (1998) HPLC-mass spectrometry analysis of isoflavones. Exp Biol Med 217(3):254–262

    CAS  Google Scholar 

  • Barnes S, Wang C-C, Smith-Johnson M et al (1999) Liquid chromatography: mass spectrometry of isoflavones. J Med Food 2(3–4):111–117

    CAS  PubMed  Google Scholar 

  • Barnes S, Wang C, Kirk M et al (2002) HPLC-mass spectrometry of isoflavonoids in soy and the American groundnut, Apios americana. In: Buslig BS, Manthey JA (eds) Flavonoids in cell function. Springer, New York, pp 77–88

  • Barnes S, Prasain JK, Wang CC et al (2006) Applications of LC–MS in the study of the uptake, distribution, metabolism and excretion of bioactive polyphenols from dietary supplements. Life Sci 78(18):2054–2059

    CAS  PubMed  Google Scholar 

  • Bhat G, Shawl A, Shah Z et al (2014) HPLC–DAD–ESI–MS/MS identification and Characterization of Major Constituents of Iris crocea, Iris germanica and Iris spuria Growing in Kashmir Himalayas, India. J Anal Bioanal Tech 5(223):2

    Google Scholar 

  • Bilia AR, Bergonzi MC, Mazzi G et al (2001) Analysis of plant complex matrices by use of nuclear magnetic resonance spectroscopy: St. John’s wort extract. J Agric Food Chem 49(5):2115–2124

    CAS  PubMed  Google Scholar 

  • Bustamante-Rangel M, Perez-Martin L, Delgado-Zamarreno MM (2014) Comparative study of the methodology used in the extraction of isoflavones from legumes applying a modified QuEChERS approach. Phytochem Anal 25(2):170–177

    CAS  PubMed  Google Scholar 

  • Cao J, Wei YJ, Qi LW et al (2008) Determination of fifteen bioactive components in Radix et Rhizoma Salviae Miltiorrhizae by high-performance liquid chromatography with ultraviolet and mass spectrometric detection. Biomed Chromatogr 22(2):164–172

    CAS  PubMed  Google Scholar 

  • Cao G, Chen X, Wu X et al (2014) Rapid identification and comparative analysis of chemical constituents in herbal medicine Fufang decoction by ultra-high-pressure liquid chromatography coupled with a hybrid linear ion trap-high-resolution mass spectrometry. Biomed Chromatogr. doi:10.1002/bmc.3333

  • Careri M, Corradini C, Elviri L et al (2007) Optimization of a rapid microwave assisted extraction method for the liquid chromatography–electrospray–tandem mass spectrometry determination of isoflavonoid aglycones in soybeans. J Chromatogr A 1152(1–2):274–279

    CAS  PubMed  Google Scholar 

  • Casanova M, You L, Gaido KW et al (1999) Developmental effects of dietary phytoestrogens in Sprague-Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol Sci 51(2):236–244

    CAS  PubMed  Google Scholar 

  • Cheng BL, Yegge JA, Bailey DT et al (1997) Process for isolation and purification of isoflavones. US Patent #5679806

  • Cheng XL, Wan JY, Li P et al (2011) Ultrasonic/microwave assisted extraction and diagnostic ion filtering strategy by liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid characterization of flavonoids in Spatholobus suberectus. J Chromatogr A 1218(34):5774–5786

    CAS  PubMed  Google Scholar 

  • Churchwell MI, Twaddle NC, Meeker LR et al (2005) Improving LC–MS sensitivity through increases in chromatographic performance: comparisons of UPLC–ES/MS/MS to HPLC–ES/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 825(2):134–143

    CAS  PubMed  Google Scholar 

  • Clarke DB, Bailey V, Lloyd AS (2008) Determination of phytoestrogens in dietary supplements by LC–MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(5):534–547

    CAS  PubMed  Google Scholar 

  • Corradini E, Foglia P, Giansanti P et al (2011) Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res 25(5):469–495

    CAS  PubMed  Google Scholar 

  • Coward L, Barnes NC, Setchell KD et al (1993) Genistein, daidzein, and their. beta.-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem 41(11):1961–1967

    CAS  Google Scholar 

  • Dachtler M, Glaser T, Kohler K et al (2001) Combined HPLC–MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina. Anal Chem 73(3):667–674

    CAS  PubMed  Google Scholar 

  • KEGG Database, Isoflavonoid biosynthesis—reference pathway. Accesed on 18-December-2014. http://www.genome.jp/kegg-bin/show_pathway?map=map00943&show_description=show

  • Davis JN, Singh B, Bhuiyan M et al (1998) Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 32(3):123–131

    CAS  PubMed  Google Scholar 

  • Davis J, Kucuk O, Sarkar F (2000) Molecular effects of soy-isoflavone genistein in prostate cancer cells. J Nutr 130:686S–687S

    Google Scholar 

  • de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31(2):129–137

    Google Scholar 

  • de Lima PF, Colombo CA, Chiorato AF et al (2014) Occurrence of isoflavonoids in Brazilian common bean germplasm (Phaseolus vulgaris L.). J Agric Food Chem 62(40):9699–9704

    PubMed  Google Scholar 

  • de Rijke E, Zafra-Gómez A, Ariese F et al (2001) Determination of isoflavone glucoside malonates in Trifolium pratense L. (red clover) extracts: quantification and stability studies. J Chromatogr A 932(1):55–64

    PubMed  Google Scholar 

  • Delmonte P, Rader JI (2006) Analysis of isoflavones in foods and dietary supplements. J AOAC Int 89(4):1138–1146

    CAS  PubMed  Google Scholar 

  • Dewick PM (1982) Isoflavonoids, The flavonoids. Springer, pp. 535–640

  • Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154(2):453–457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4(10):394–400

    PubMed  Google Scholar 

  • Drašar P, Moravcova J (2004) Recent advances in analysis of Chinese medical plants and traditional medicines. J Chromatogr B 812(1):3–21

    Google Scholar 

  • Eldridge AC (1982) Determination of isoflavones in soybean flours, protein concentrates, and isolates. J Agric Food Chem 30(2):353–355

    CAS  Google Scholar 

  • Fan R, Li N, Jiang X, Yuan F, Gao Y (2014) HPLC–DAD–MS/MS identification and HPLC–ABTS·+ on-line antioxidant activity evaluation of bioactive compounds in liquorice (Glycyrrhiza uralensis Fisch.) extract. Eur Food Res Technol 240:1035–1048. doi:10.1007/s00217-014-2407-5

  • Fang C, Wan X, Tan H et al (2006) Identification of isoflavonoids in several kudzu samples by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Chromatogr Sci 44(2):57–63

    CAS  PubMed  Google Scholar 

  • Farag MA, Huhman DV, Lei Z et al (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC–UV–ESI–MS and GC–MS. Phytochemistry 68(3):342–354

    CAS  PubMed  Google Scholar 

  • Franke AA, Custer LJ, Cerna CM et al (1995) Rapid HPLC analysis of dietary phytoestrogens from legumes and from human urine. Exp Biol Med 208(1):18–26

    CAS  Google Scholar 

  • Fukutake M, Takahashi M, Ishida K et al (1996) Quantification of genistein and genistin in soybeans and soybean products. Food Chem Toxicol 34(5):457–461

    CAS  PubMed  Google Scholar 

  • Griffith AP, Collison MW (2001) Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography–mass spectrometry. J Chromatogr A 913(1):397–413

    CAS  PubMed  Google Scholar 

  • Hanganu D, Vlase L, Olah N (2010) LC/MS analysis of isoflavones from Fabaceae species extracts. Farmacia 58(2):177–183

    CAS  Google Scholar 

  • Hillman GG, Forman JD, Kucuk O et al (2001) Genistein potentiates the radiation effect on prostate carcinoma cells. Clin Cancer Res 7(2):382–390

    CAS  PubMed  Google Scholar 

  • Hsu JT, Jean TC, Chan MA et al (1999) Differential display screening for specific gene expression induced by dietary nonsteroidal estrogen. Mol Reprod Dev 52(2):141–148

    CAS  PubMed  Google Scholar 

  • Hsu JT, Ying C, Chen CJ (2000) Regulation of inducible nitric oxide synthase by dietary phytoestrogen in MCF-7 human mammary cancer cells. Reprod Nutr Dev 40(1):11–18

    CAS  PubMed  Google Scholar 

  • Jasinski M, Kachlicki P, Rodziewicz P et al (2009) Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol Biochem 47(9):847–853

    CAS  PubMed  Google Scholar 

  • Kachlicki P, Marczak L, Kerhoas L et al (2005) Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. J Mass Spectrom 40(8):1088–1103

    CAS  PubMed  Google Scholar 

  • Kachlicki P, Einhorn J, Muth D et al (2008) Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J Mass Spectrom 43(5):572–586

    CAS  PubMed  Google Scholar 

  • Kang J, Hick LA, Price WE (2007) A fragmentation study of isoflavones in negative electrospray ionization by MSn ion trap mass spectrometry and triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom 21(6):857–868

    CAS  PubMed  Google Scholar 

  • Kang SW, Kim MC, Kim CY et al (2008) The rapid identification of isoflavonoids from Belamcanda chinensis by LC–NMR and LC–MS. Chem Pharm Bull 56(10):1452–1454

    CAS  PubMed  Google Scholar 

  • Kenny AM, Prestwood KM (2000) Osteoporosis. Pathogenesis, diagnosis, and treatment in older adults. Rheum Dis Clin N Am 26(3):569–591

    CAS  Google Scholar 

  • Kim JH, Park S, Lim HK et al (2007) Quantitative evaluation of Radix Astragali through the simultaneous determination of bioactive isoflavonoids and saponins by HPLC/UV and LC–ESI–MS/MS. Bull Korean Chem Soc 28(7):1187

    CAS  Google Scholar 

  • Klejdus B, Vitamvásová D, Kubáň V (1999) Reversed-phase high-performance liquid chromatographic determination of isoflavones in plant materials after isolation by solid-phase extraction. J Chromatogr A 839(1):261–263

    CAS  Google Scholar 

  • Klejdus B, Lojkova L, Lapcik O et al (2005a) Supercritical fluid extraction of isoflavones from biological samples with ultra-fast high-performance liquid chromatography/mass spectrometry. J Sep Sci 28(12):1334–1346

    CAS  PubMed  Google Scholar 

  • Klejdus B, Mikelová R, Petrlová J et al (2005b) Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. J Agric Food Chem 53(15):5848–5852

    CAS  PubMed  Google Scholar 

  • Klejdus B, Lojková L, Plaza M et al (2010) Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. J Chromatogr A 1217(51):7956–7965

    CAS  PubMed  Google Scholar 

  • Konar N, Poyrazoğlu ES, Demir K et al (2012) Determination of conjugated and free isoflavones in some legumes by LC–MS/MS. J Food Compos Anal 25(2):173–178

    CAS  Google Scholar 

  • Krause M, Galensa R (1991) Analysis of enantiomeric flavanones in plant extracts by high-performance liquid chromatography on a cellulose triacetate based chiral stationary phase. Chromatographia 32(1–2):69–72

    CAS  Google Scholar 

  • Kuhn F, Oehme M, Romero F et al (2003) Differentiation of isomeric flavone/isoflavone aglycones by MS2 ion trap mass spectrometry and a double neutral loss of CO. Rapid Commun Mass Spectrom 17(17):1941–1949

    CAS  PubMed  Google Scholar 

  • Lee M-H, Lin C-C (2007) Comparison of techniques for extraction of isoflavones from the root of Radix Puerariae: ultrasonic and pressurized solvent extractions. Food Chem 105(1):223–228

    CAS  Google Scholar 

  • Lee KJ, Row KH (2006) Enhanced extraction of isoflavones from Korean soybean by ultrasonic wave. Korean J Chem Eng 23(5):779–783

    CAS  Google Scholar 

  • Lee MJ, Chung IM, Kim H et al (2015) High resolution LC–ESI–TOF-mass spectrometry method for fast separation, identification, and quantification of 12 isoflavones in soybeans and soybean products. Food Chem 176:254–262

    CAS  PubMed  Google Scholar 

  • Li YJ, Chen J, Li Y et al (2011) Screening and characterization of natural antioxidants in four Glycyrrhiza species by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Chromatogr A 1218(45):8181–8191

    CAS  PubMed  Google Scholar 

  • Liggins J, Bluck LJ, Coward WA et al (1998) Extraction and quantification of daidzein and genistein in food. Anal Biochem 264(1):1–7

    CAS  PubMed  Google Scholar 

  • Li-Hsun C, Ya-Chuan C, Chieh-Ming C (2004) Extracting and purifying isoflavones from defatted soybean flakes using superheated water at elevated pressures. Food Chem 84(2):279–285

    Google Scholar 

  • Lin F, Giusti MM (2005) Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). J Agric Food Chem 53(10):3795–3800

    CAS  PubMed  Google Scholar 

  • Lin L-Z, He X-G, Lindenmaier M et al (2000a) Liquid chromatography–electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. J Chromatogr A 876(1):87–95

    CAS  PubMed  Google Scholar 

  • Lin L-Z, He X-G, Lindenmaier M et al (2000b) LC–ESI–MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J Agric Food Chem 48(2):354–365

    CAS  PubMed  Google Scholar 

  • Lissin LW, Cooke JP (2000) Phytoestrogens and cardiovascular health. J Am Coll Cardiol 35(6):1403–1410

    CAS  PubMed  Google Scholar 

  • Liu R, Ye M, Guo H et al (2005) Liquid chromatography/electrospray ionization mass spectrometry for the characterization of twenty-three flavonoids in the extract of Dalbergia odorifera. Rapid Commun Mass Spectrom 19(11):1557–1565

    CAS  PubMed  Google Scholar 

  • Liu S, Yi LZ, Liang YZ (2008) Traditional Chinese medicine and separation science. J Sep Sci 31(11):2113–2137

    CAS  PubMed  Google Scholar 

  • Lojza J, Cajka T, Schulzova V et al (2012) Analysis of isoflavones in soybeans employing direct analysis in real-time ionization–high-resolution mass spectrometry. J Sep Sci 35(3):476–481

    CAS  PubMed  Google Scholar 

  • Luthria DL, Biswas R, Natarajan S (2007) Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chem 105(1):325–333

    CAS  Google Scholar 

  • March RE, Miao X-S, Metcalfe CD et al (2004) A fragmentation study of an isoflavone glycoside, genistein-7-O-glucoside, using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int J Mass Spectrom 232(2):171–183

    CAS  Google Scholar 

  • Maul R, Schebb NH, Kulling SE (2008) Application of LC and GC hyphenated with mass spectrometry as tool for characterization of unknown derivatives of isoflavonoids. Anal Bioanal Chem 391(1):239–250

    CAS  PubMed  Google Scholar 

  • Murphy PA, Barua K, Hauck CC (2002) Solvent extraction selection in the determination of isoflavones in soy foods. J Chromatogr B 777(1):129–138

    CAS  Google Scholar 

  • Muth D, Marsden-Edwards E, Kachlicki P et al (2008) Differentiation of isomeric malonylated flavonoid glyconjugates in plant extracts with UPLC–ESI/MS/MS. Phytochem Anal 19(5):444–452

    CAS  PubMed  Google Scholar 

  • Nguyen VD, Min BC, Kyung MO et al (2009) Identification of a naturally-occurring 8-[alpha-D-glucopyranosyl-(1 → 6)-beta-d-glucopyranosyl]daidzein from cultivated kudzu root. Phytochem Anal 20(6):450–455

    CAS  PubMed  Google Scholar 

  • Pandey R, Chandra P, Arya KR et al (2014) Development and validation of an ultra high performance liquid chromatography electrospray ionization tandem mass spectrometry method for the simultaneous determination of selected flavonoids in Ginkgo biloba. J Sep Sci 37(24):3610–3618

    CAS  PubMed  Google Scholar 

  • Pietta P, Mauri P, Bruno A et al (1991) Identification of flavonoids from Ginkgo biloba L., Anthemis nobilis L. and Equisetum arvense L. by high-performance liquid chromatography with diode-array UV detection. J Chromatogr A 553:223–231

    CAS  Google Scholar 

  • Pinheiro PF, Justino GC (2010) Structural analysis of flavonoids and related compounds—a review of spectroscopic applications. In: Rao V (ed)  Phytochemicals—a global perspective of their roles in nutrition health, InTech. CRC press, Boca Raton, USA

  • Prasain JK, Reppert A, Jones K et al (2007) Identification of isoflavone glycosides in Pueraria lobata cultures by tandem mass spectrometry. Phytochem Anal 18(1):50–59

    CAS  PubMed  Google Scholar 

  • Prokudina E, Havlíček L, Al-Maharik N et al (2012) Rapid UPLC–ESI–MS/MS method for the analysis of isoflavonoids and other phenylpropanoids. J Food Compos Anal 26(1):36–42

    CAS  Google Scholar 

  • Qi L-W, Yu Q-T, Li P et al (2006) Quality evaluation of Radix Astragali through a simultaneous determination of six major active isoflavonoids and four main saponins by high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors. J Chromatogr A 1134(1):162–169

    CAS  PubMed  Google Scholar 

  • Qiu F, Tong Z, Gao J et al (2015) Rapid and simultaneous quantification of seven bioactive components in Radix Astragali based on pressurized liquid extraction combined with HPLC–ESI–MS/MS analysis. Anal Methods. doi:10.1039/C5AY00083A

  • Ralston L, Subramanian S, Matsuno M et al (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137(4):1375–1388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rehwald A, Meier B, Sticher O (1994) Qualitative and quantitative reversed-phase high-performance liquid chromatography of flavonoids in Crataegus leaves and flowers. J Chromatogr A 677(1):25–33

    CAS  Google Scholar 

  • Reynaud J, Guilet D, Terreux R et al (2005) Isoflavonoids in non-leguminous families: an update. Nat Prod Rep 22(4):504–515

    CAS  PubMed  Google Scholar 

  • Rostagno MA, Araújo J, Sandi D (2002) Supercritical fluid extraction of isoflavones from soybean flour. Food Chem 78(1):111–117

    CAS  Google Scholar 

  • Rostagno MA, Palma M, Barroso CG (2003) Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A 1012(2):119–128

    CAS  PubMed  Google Scholar 

  • Rostagno M, Palma M, Barroso C (2004) Pressurized liquid extraction of isoflavones from soybeans. Anal Chim Acta 522(2):169–177

    CAS  Google Scholar 

  • Rostagno MA, Palma M, Barroso CG (2005) Solid-phase extraction of soy isoflavones. J Chromatogr A 1076(1–2):110–117

    CAS  PubMed  Google Scholar 

  • Rostagno MA, Palma M, Barroso CG (2007) Microwave assisted extraction of soy isoflavones. Anal Chim Acta 588(2):274–282

    CAS  PubMed  Google Scholar 

  • Rostagno M, Villares A, Guillamón E et al (2009) Sample preparation for the analysis of isoflavones from soybeans and soy foods. J Chromatogr A 1216(1):2–29

    CAS  PubMed  Google Scholar 

  • Rostagno M, Manchon N, Guillamon E et al (2010) Methods and techniques for the analysis of isoflavones in foods. In: Hurst WJ (ed) Chromatography types, techniques and methods. Nova Science Publishers Inc, Hauppauge, New York pp 157–198

  • Sapozhnikova Y (2014) Development of liquid chromatography–tandem mass spectrometry method for analysis of polyphenolic compounds in liquid samples of grape juice, green tea and coffee. Food Chem 150:87–93

    CAS  PubMed  Google Scholar 

  • Sharma V, Ramawat KG (2013) Isoflavonoids, Natural Products. Springer, Berlin, pp 1849–1865

    Google Scholar 

  • Shi Z, Li Z, Zhang S et al (2015) Subzero-temperature liquid–liquid extraction coupled with UPLC–MS–MS for the simultaneous determination of 12 bioactive components in traditional Chinese Medicine Gegen-Qinlian Decoction. J Chromatogr Sci. doi:10.1093/chromsci/bmu226

  • Shihabi Z, Kute T, Garcia L et al (1994) Analysis of isoflavones by capillary electrophoresis. J Chromatogr A 680(1):181–185

    CAS  Google Scholar 

  • Simons R, Vincken JP, Bakx EJ et al (2009) A rapid screening method for prenylated flavonoids with ultra-high-performance liquid chromatography/electrospray ionisation mass spectrometry in licorice root extracts. Rapid Commun Mass Spectrom 23(19):3083–3093

    CAS  PubMed  Google Scholar 

  • Simons R, Vincken JP, Bohin MC et al (2011a) Identification of prenylated pterocarpans and other isoflavonoids in Rhizopus spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 25(1):55–65

    CAS  PubMed  Google Scholar 

  • Simons R, Vincken JP, Roidos N et al (2011b) Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J Agric Food Chem 59(12):6748–6758

    CAS  PubMed  Google Scholar 

  • Staszkow A, Swarcewicz B, Banasiak J et al (2011) LC/MS profiling of flavonoid glycoconjugates isolated from hairy roots, suspension root cell cultures and seedling roots of Medicago truncatula. Metabolomics 7(4):604–613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stobiecki M, Malosse C, Kerhoas L et al (1999) Detection of isoflavonoids and their glycosides by liquid chromatography/electrospray ionization mass spectrometry in root extracts of lupin (Lupinus albus). Phytochem Anal 10(4):198–207

    CAS  Google Scholar 

  • Sun Y, Li W, Wang J (2011) Ionic liquid based ultrasonic assisted extraction of isoflavones from Iris tectorum Maxim and subsequently separation and purification by high-speed counter-current chromatography. J Chromatogr B Anal Technol Biomed Life Sci 879(13–14):975–980

    CAS  Google Scholar 

  • Tang L, Liu Y, Wang Y et al (2010) Phytochemical analysis of an antiviral fraction of Radix astragali using HPLC–DAD–ESI–MS/MS. J Nat Med 64(2):182–186

    CAS  PubMed  Google Scholar 

  • Tian H, Xu J, Xu Y et al (2006) Multidimensional liquid chromatography system with an innovative solvent evaporation interface. J Chromatogr A 1137(1):42–48

    CAS  PubMed  Google Scholar 

  • Tibe O, Meagher LP, Fraser K et al (2011) Condensed tannins and flavonoids from the forage legume sulla (Hedysarum coronarium). J Agric Food Chem 59(17):9402–9409

    CAS  PubMed  Google Scholar 

  • Uchiyama N, Kim IH, Kikura-Hanajiri R et al (2008) HPLC separation of naringin, neohesperidin and their C-2 epimers in commercial samples and herbal medicines. J Pharm Biomed Anal 46(5):864–869

    CAS  PubMed  Google Scholar 

  • Vacek J, Klejdus B, Lojkova L et al (2008) Current trends in isolation, separation, determination and identification of isoflavones: a review. J Sep Sci 31(11):2054–2067

    CAS  PubMed  Google Scholar 

  • Van der Schouw Y, De Kleijn M, Peeters P et al (2000) Phyto-oestrogens and cardiovascular disease risk. Nutr Metab Cardiovasc Dis NMCD 10(3):154–167

    Google Scholar 

  • Veitch NC (2007) Isoflavonoids of the Leguminosae. Nat Prod Rep 24(2):417–464

    CAS  PubMed  Google Scholar 

  • Veitch NC (2009) Isoflavonoids of the Leguminosae. Nat Prod Rep 26(6):776–802

    CAS  PubMed  Google Scholar 

  • Veitch NC (2013) Isoflavonoids of the leguminosae. Nat Prod Rep 30(7):988–1027

    CAS  PubMed  Google Scholar 

  • Vukics V, Guttman A (2010) Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom Rev 29(1):1–16

    CAS  PubMed  Google Scholar 

  • Wang H-J, Murphy PA (1994) Isoflavone content in commercial soybean foods. J Agric Food Chem 42(8):1666–1673

    CAS  Google Scholar 

  • Wang J, Sporns P (2000) MALDI-TOF MS analysis of isoflavones in soy products. J Agric Food Chem 48(12):5887–5892

    CAS  PubMed  Google Scholar 

  • Wu N, Thompson R (2006) Fast and efficient separations using reversed phase liquid chromatography. J Liq Chromatogr Related technol 29(7–8):949–988

    CAS  Google Scholar 

  • Wu Q, Wang M, Simon JE (2003) Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J Chromatogr A 1016(2):195–209

    CAS  PubMed  Google Scholar 

  • Wu Q, Wang M, Sciarappa WJ et al (2004) LC/UV/ESI–MS analysis of isoflavones in Edamame and Tofu soybeans. J Agric Food Chem 52(10):2763–2769

    CAS  PubMed  Google Scholar 

  • Xu H, Zhang Y, He C (2007) Ultrasonically assisted extraction of isoflavones from stem of Pueraria lobata (Willd.) Ohwi and its mathematical model. Chin J Chem Eng 15(6):861–867

    CAS  Google Scholar 

  • Xu D-M, Zhou Y, Lin L-Y et al (2010) Determination of rotenone residues in foodstuffs by solid-phase extraction (spe) and liquid chromatography/tandem mass spectrometry (LC–MS/MS). Agricultural Sciences in China 9(9):1299–1308

    CAS  Google Scholar 

  • Yang M, Wang W, Sun J et al (2007) Characterization of phenolic compounds in the crude extract of Hedysarum multijugum by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21(23):3833–3841

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xu Q, Zhang X et al (2005) High-performance liquid chromatography-tandem mass spectrometry for identification of isoflavones and description of the biotransformation of kudzu root. Anal Bioanal Chem 383(5):787–796

    CAS  PubMed  Google Scholar 

  • Zhang L, Xu L, Xiao SS et al (2007) Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. J Pharm Biomed Anal 44(5):1019–1028

    CAS  PubMed  Google Scholar 

  • Zhang HJ, Yang XP, Wang KW (2010) Isolation of two new C-glucofuranosyl isoflavones from Pueraria lobata (Wild.) Ohwi with HPLC–MS guiding analysis. J Asian Nat Prod Res 12(4):293–299

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xu F, Zhang J et al (2014) Investigations of the fragmentation behavior of 11 isoflavones with ESI-IT-TOF-MSn. J Chin Pharmaceut Sci 23(9):631–641

    Google Scholar 

  • Zhou J-L, Li P, Li H-J et al (2008) Development and validation of a liquid chromatography/electrospray ionization time-of-flight mass spectrometry method for relative and absolute quantification of steroidal alkaloids in Fritillaria species. J Chromatogr A 1177(1):126–137

    CAS  PubMed  Google Scholar 

  • Zhou JL, Qi LW, Li P (2009) Herbal medicine analysis by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A 1216(44):7582–7594

    CAS  PubMed  Google Scholar 

  • Zhou W, Shan J, Ju W et al (2015) Simultaneous determination of twenty-six components of Flos Lonicerae japonicae–Fructus Forsythiae herb couple using UPLC–ESI–MS/MS: application to its preparations. Anal Methods 7:1425–1437

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wahajuddin.

Additional information

Kanumuri Siva Rama Raju, Naveen Kadian and Isha Taneja have contributed equally to this work.

CDRI Communication No. 8948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, K.S.R., Kadian, N., Taneja, I. et al. Phytochemical analysis of isoflavonoids using liquid chromatography coupled with tandem mass spectrometry. Phytochem Rev 14, 469–498 (2015). https://doi.org/10.1007/s11101-015-9400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9400-x

Keywords

Navigation