Skip to main content
Log in

Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The voltammetric behaviour and amperometric detection of tetracycline (TC) antibiotics at multi-wall carbon nanotube modified glassy carbon electrodes (MWCNT-GCE) are reported. Cyclic voltammograms of TCs showed enhanced oxidation responses at the MWCNT-GCE with respect to the bare GCE, attributable to the increased active electrode surface area. Hydrodynamic voltammograms obtained by flow-injection with amperometric detection at the MWCNT-GCE led us to select a potential value E det = +1.20 V. The repeatability of the amperometric responses was much better than that achieved with bare GCE (RSD ranged from 7 to 12%), with RSD values for i p of around 3%, thus demonstrating the antifouling capability of MWCNT modified electrodes. An HPLC method with amperometric electrochemical detection (ED) at the MWCNT-GCE was developed for tetracycline, oxytetracycline (OTC), chlortetracycline and doxycycline (DC). A mobile phase consisting of 18:82 acetonitrile/0.05 mol L−1 phosphate buffer of pH 2.5 was selected. The limits of detection ranged from 0.09 μmol L−1 for OTC to 0.44 μmol L−1 for DC. The possibility to carry out multiresidue analysis is demonstrated. The HPLC-ED/MWCNT-GCE method was applied to the analysis of fish farm pool water and underground well water samples spiked with the four TCs at 2.0 × 10−7 mol L−1. Solid-phase extraction was accomplished for the preconcentration of the analytes and clean-up of the samples. Recoveries ranged from 87 ± 6 to 99 ± 3%. Under preconcentration conditions, limits of detection in the water samples were between 0.50 and 3.10 ng mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babić S, Ašperger D, Mutavdžić D, Horvat AJM, Kaštelan-Macan M (2006) Talanta 70:732–738

    Article  Google Scholar 

  2. Díaz-Cruz MS, López de Alda MJ, Barceló D (2003) Trends Anal Chem 22:340–351

    Article  Google Scholar 

  3. Rabolle M, Spliid NH (2000) Chemosphere 40:715–722

    Article  CAS  Google Scholar 

  4. Kim S-C, Carlson K (2006) Water Res 40:2549–2560

    Article  CAS  Google Scholar 

  5. Monser L, Darghouth F (2000) J Pharm Biomed Anal 23:353–362

    Article  CAS  Google Scholar 

  6. Delépée R, Pouliquen H (2003) Anal Chim Acta 475:117–123

    Article  Google Scholar 

  7. Furusawa N (2003) Talanta 59:155–159

    Article  CAS  Google Scholar 

  8. Wen Y, Wang Y, Feng YQ (2006) Talanta 70:153–159

    Article  CAS  Google Scholar 

  9. Pena ALS, Lino CM, Silveira IN (1999) J AOAC Int 82:55–62

    CAS  Google Scholar 

  10. Ferraz Spisso B, de Oliveira e Jesus AL, Gonçalves de Araújo Júnior MA, Alves Monteiro M (2007) Anal Chim Acta 581:108–117

    Article  Google Scholar 

  11. Wan G, Cui H, Zeng H, Zhou J, Liu L, Yu X (2005) J Chromatogr B 824:57–64

    CAS  Google Scholar 

  12. Palaharn S, Charoenraks T, Wangfuengkanagul N, Grudpan K, Chailapakul O (2003) Anal Chim Acta 499:191–197

    Article  CAS  Google Scholar 

  13. Charoenraks T, Chuanuwatanakul S, Honda K, Yamaguchi Y, Chailapakul O (2005) Anal Sci 21:241–246

    Article  CAS  Google Scholar 

  14. Cai Y, Cai Y, Shi Y, Mou S, Lu Y (2006) J Chromatogr A 1118:35–40

    Article  CAS  Google Scholar 

  15. Kazemifard AG, Moore DE (1997) J Pharm Biomed Anal 16:689–693

    Article  CAS  Google Scholar 

  16. Zhao F, Zhang X, Gan Y (2004) J Chromatogr A (2004) 1055:109–114

    Article  CAS  Google Scholar 

  17. Guzmán A, Agüí L, Pedrero M, Yáñez-Sedeño P, Pingarrón JM (2003) Electroanalysis 15:601–607

    Article  Google Scholar 

  18. Wangfuengkanagul W, Siangproh W, Chailapakul O (2004) Talanta 64:1183–1188

    Article  CAS  Google Scholar 

  19. Oungpipat W, Southwell-Keely P, Alexander PW (1995) Analyst 120:1559–1565

    Article  CAS  Google Scholar 

  20. Treetepvijit S, Preechaworapun A, Praphairaksit N, Chuanuwatanakul S, Einaga Y, Chailapakul O (2006) Talanta 68:1329–1335

    Article  CAS  Google Scholar 

  21. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Electroanalysis 4:225–230

    Article  Google Scholar 

  22. Wang J, Deo RP, Musameh M (2003) Electroanalysis 15:1830–1834

    Article  CAS  Google Scholar 

  23. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  24. Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2007) Talanta 71:1031–1038

    Article  CAS  Google Scholar 

  25. Agüí L, Peña-Farfal C, Yáñez-Sedeño P, Pingarrón JM (2007) Anal Chim Acta 585:323–330

    Article  Google Scholar 

  26. Ureta-Zañartu MS, Bustos P, Berríos C, Diez MC, Mora ML, Gutiérrez C (2002) Electrochim Acta 47:2399–2406

    Article  Google Scholar 

  27. Bryan PD, Stewent JT (1993) J Pharm Biomed Anal 11:971–976

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministerio de Educación y Ciencia (Projects CTQ2006-02905 and CTQ2006-02743), and PR27/05-13860-BSCH is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yáñez-Sedeño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, D., Agüí, L., González-Cortés, A. et al. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem 389, 951–958 (2007). https://doi.org/10.1007/s00216-007-1505-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1505-7

Keywords

Navigation