Skip to main content
Log in

Chiral complexation and aggregation of bilirubin with serum albumin at a liquid/liquid interface

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The chiral complexation of bilirubin (BR) with bovine and human serum albumin (BSA and HSA), and the aggregation of the complexes at the heptane+chloroform(5:1)/water interface were studied via UV/Vis absorption and circular dichroism (CD) measurements in combination with the centrifugal liquid membrane (CLM) method. The interfacial adsorptivities of BR, BSA and their complexes were also studied by performing interfacial tension measurements at the interface. The changes in the absorbances and the induced CD amplitudes of the interfacial BR–BSA complex provided insights into the mechanism of the conformational enantioselective complexation at the interface, and indicated that the chiral conversion induced by the complexation with BSA was from the P(+) form to the M(−) form of BR. The broadening of the 450 nm band and the appearance of a new shoulder at 474 nm further supported the formation of aggregates of the complexes at the interface. The dependence of the CD amplitude on the molar ratio of BSA to BR revealed that the composition of the complex was 1:1 BSA:BR. The probable interfacial reaction scheme was proposed, and the affinity constant of BR–BSA at the interface was found to be 4.67 × 108 M−2. The interfacial complexation and aggregation of BR and HSA were weaker than those of the BR–BSA complex due to the different BR binding positions adopted for BSA and HSA and the binding effect of chloroform.

Enatioselective interfacial complexation and aggregation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a–b
Fig. 9

Similar content being viewed by others

Notes

  1. Unfortunately we couldn’t derive the affinity constant of BR to HSA at the interface because the effect of the self-aggregation of BR at lower MR on the weak CD amplitude of the aggregates of the BR–HSA complex results in a large calculation error.

References

  1. Adamanson AW (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

  2. Samec Z (1988) Chem Rev 88:617–632

    Article  CAS  Google Scholar 

  3. Watarai H (1993) Trends Anal Chem 12:313–318

    Article  CAS  Google Scholar 

  4. Volkov AG (ed)(2001) Liquid interfaces in chemical, biological and pharmaceutical apprications, parts II–III. Marcel Dekker, New York

  5. McDonagh AF (1979) Bile pigments: bilatrienes and 5,15-biladienes. In: Dolphin D (ed) The porphyrins, vol 6. Academic, New York, pp 293–491

  6. Yang F, Zheng WJ, Bai Y, Feng DX, Ouyang JM (2003) The spectrum characteristics of unconjugated bilirubin and transition metal ions in NaOH solution.Chemical Journal on Internet 5:37 (see http://www.chemistrymag.org/cji/2003/055037ne.htm, cited 18 July 2007)

    Google Scholar 

  7. Rai AK, Rai SB, Rai DK, Singh VB (2002) Spectrochim Acta A 58:2145–2152

    Article  Google Scholar 

  8. Hsieh YZ, Lee NS, Sheng RS, Morris MD (1987) Langmuir 3:1141–1146

    Article  CAS  Google Scholar 

  9. Hsieh YZ, Morris M (1988) J Am Chem Soc 110:62–67

    Article  CAS  Google Scholar 

  10. Boiadjiev SE, Lightner DA (1999) Tetrahedron Asymm 10:607–655

    Google Scholar 

  11. Person RV, Peterson BR, Lightner DA (1994) J Am Chem Soc 116:42–59

    Article  CAS  Google Scholar 

  12. Trull FR, Person RV, Lightner DA (1997) J Chem Soc Perkin Trans 2:1241–1250

    Google Scholar 

  13. Maiti NC, Mazumdar S, Periasamy N (1998) J Phys Chem B 102:1528–1538

    Article  CAS  Google Scholar 

  14. Adachi K, Watarai H (2006) Anal Chem 78:6840–6846

    Article  CAS  Google Scholar 

  15. Nagatani H, Watarai H (1998) Anal Chem 70:2860–2865

    Article  CAS  Google Scholar 

  16. Nagatani H, Watarai H (1999) Chem Lett 701–702

  17. Ohashi A, Watarai H (2002) Langmuir 18:10292–10297

    Article  CAS  Google Scholar 

  18. Wada S, Fujiwara K, Monjushiro H, Watarai H (2004) Anal Sci 20:1489–1491

    Article  CAS  Google Scholar 

  19. Watarai H, Horii Y, Fujishima M (1988) Bull Chem Soc Jpn 61:1159–1162

    Article  CAS  Google Scholar 

  20. Blauer G, Wagnière G (1975) J Am Chem Soc 97:1949–1954

    Article  CAS  Google Scholar 

  21. Harada N, Nakanishi K (1983) Circular dichroism spectroscopy: exciton coupling in organic stereochemistry. University Science Books, Mill Valley, CA

  22. Brodersen R (1979) J Bio Chem 254:2364–2369

    CAS  Google Scholar 

  23. Lightner DA, Gawronski JK, Gawronska K (1985) J Am Chem Soc 107:2456–2461

    Article  Google Scholar 

  24. Kamisaka K, Listowsky I, Betheil JJ, Arias IM (1974) Biochim Biophys Acta 365:169–180

    CAS  Google Scholar 

  25. Patra SK, Pal MK (1997) Eur J Biochem 246:658–664

    Article  CAS  Google Scholar 

  26. Pu YM, McDonagh AF, Lightner DA (1993) J Am Chem Soc 115:377–380

    Article  CAS  Google Scholar 

  27. Minchiotti L, Galliano M, Zapponi MC, Tenni R (1993) Eur J Biochem 214:437–444

    Article  CAS  Google Scholar 

  28. Levine RL (1977) Clin Chem 23:2292–2301

    CAS  Google Scholar 

  29. Blaha G, Siam M, Lehner H (1997) J Chem Soc Perkin Trans 2:2119–2124

    Google Scholar 

  30. Jacobsen J (1969) FEBS Lett 5:112–114

    Article  CAS  Google Scholar 

  31. Beaven GH, d’Albis A, Gratzer WB (1973) Eur J Biochem 33:500–510

    Article  CAS  Google Scholar 

  32. Watkins S, Sakamoto Y, Madison J, Davis E, Smith DG, Dwulet J, Putnam FW (1993) Proc Natl Acad Sci USA 90:2409–2413

    Article  CAS  Google Scholar 

  33. He XM, Carter DC (1992) Nature 358:209–215

    Article  CAS  Google Scholar 

  34. Carter DC, Ho JX (1994) Adv Protein Chem 45:153–203

    Article  CAS  Google Scholar 

  35. Lebas G, Allegret A, Mauguen Y, Derango C, Bailly M (1980) Acta Cryst B 36:3007–3011

    Article  Google Scholar 

  36. Yin JH, Watarai H (2007) Anal Sci 23:841–846

    Article  CAS  Google Scholar 

  37. Lee JJ, Gillespie GD (1981) Photochem Photobiol 33:757–760

    CAS  Google Scholar 

  38. Johansson JS (1997) J Biol Chem 272:17961–17965

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Grant-in-Aid for Scientific Research (S) (No. 16105002) of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Watarai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, JH., Watarai, H. Chiral complexation and aggregation of bilirubin with serum albumin at a liquid/liquid interface. Anal Bioanal Chem 389, 895–902 (2007). https://doi.org/10.1007/s00216-007-1497-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1497-3

Keywords

Navigation