Skip to main content
Log in

Determination of drug–serum protein interactions via fluorescence polarization measurements

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

New fast methods for the determination of pharmacokinetic behaviour of potential drug candidates are receiving increasing interest. We present a new homogeneous method for the determination of drug binding and drug competition for human serum albumin and α1-acid glycoprotein that is amenable to high-throughput-screening. It is based on selective fluorescent probes and the measurement of fluorescence polarization. This leads to decreased interference with fluorescent drugs as compared with previously published methods based on similar probes and the measurement of fluorescence intensity. The binding of highly fluorescent drugs that still interfere with the probes can be measured by simply titrating the drugs in a two-component system with the serum protein. The assay may also be used to discover strongly binding protein ligands that are interesting for drug-targeting strategies. Additionally, binding data could be obtained from larger libraries of compounds for in silico predictive pharmacokinetics.

Fluorescence polarization displacement titration of dansylsarcosine (3D-structure as insert) bound to human serum albumin (HSA) by naproxene

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eddershaw PJ, Beresford AP, Bayliss MK (2000) Drug Discov Today 5:409–414

    Article  CAS  Google Scholar 

  2. van de Waterbeemd H (2002) Curr Opin Drug Discov Dev 5:33–43

    Google Scholar 

  3. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) IUBMB Life 57:787–796

    CAS  Google Scholar 

  4. Carter DC, Ho JX (1994) Adv Protein Chem 45:153–203

    Article  CAS  Google Scholar 

  5. Solomon HM, Schrogie JJ, Williams D (1968) Biochem Pharmacol 17:143–151

    Article  CAS  Google Scholar 

  6. Kaliszan R (1998) J Chromatogr B 715:229–244

    Article  CAS  Google Scholar 

  7. Colmenarejo G, Alvarez-Pedraglio A, Lavandera JL (2001) J Med Chem 44:4370–4378

    Article  CAS  Google Scholar 

  8. Epps DE, Raub TJ, Kezdy FJ (1995) Anal Biochem 227:342–350

    Article  CAS  Google Scholar 

  9. Frostell-Karlsson A, Remaeus A, Roos H, Andersson K, Borg P, Hamalainen M, Karlsson R (2000) J Med Chem 43:1986–1992

    Article  CAS  Google Scholar 

  10. Rich RL, Day YS, Morton TA, Myszka DG (2001) Anal Biochem 296:197–207

    Article  CAS  Google Scholar 

  11. Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M (1999) J Pharm Pharmacol 51:41–48

    Article  CAS  Google Scholar 

  12. Parikh HH, McElwain K, Balasubramanian V, Leung W, Wong D, Morris ME, Ramanathan M (2000) Pharm Res 17:632–637

    Article  CAS  Google Scholar 

  13. Jameson DM, Croney JC (2003) Comb Chem High Throughput Screen 6:167–173

    CAS  Google Scholar 

  14. Owicki JC (2000) J Biomol Screen 5:297–306

    Article  CAS  Google Scholar 

  15. Sportsman JR, Daijo J, Gaudet EA (2003) Comb Chem High Throughput Screen 6:195–200

    CAS  Google Scholar 

  16. Burke TJ, Loniello KR, Beebe JA, Ervin KM (2003) Comb Chem High Throughput Screen 6:183–194

    CAS  Google Scholar 

  17. de Jong LA, Uges DR, Franke JP, Bischoff R (2005) J Chromatogr B 829:1–25

    Article  CAS  Google Scholar 

  18. Saldanha SA, Kaler G, Cottam HB, Abagyan R, Taylor SS (2006) Anal Chem 78:8265–8272

    Article  CAS  Google Scholar 

  19. Hu Y, Helm JS, Chen L, Ginsberg C, Gross B, Kraybill B, Tiyanont K, Fang X, Wu T, Walker S (2004) Chem Biol 11:703–711

    Article  CAS  Google Scholar 

  20. Antczak C, Shum D, Escobar S, Bassit B, Kim E, Seshan VE, Wu N, Yang G, Ouerfelli O, Li YM, Scheinberg DA, Djaballah H (2007) J Biomol Screen (in press)

  21. Klumpp M, Boettcher A, Becker D, Meder G, Blank J, Leder L, Forstner M, Ottl J, Mayr LM (2006) J Biomol Screen 11:617–633

    Article  CAS  Google Scholar 

  22. Moreno F, Gonzalez-Jimenez J (1999) Chem Biol Interact 121:237–252

    Article  CAS  Google Scholar 

  23. Moreno F, Cortijo M, Gonzalez-Jimenez J (1999) Photochem Photobiol 69:8–15

    Article  CAS  Google Scholar 

  24. Sudlow G, Birkett DJ, Wade DN (1976) Mol Pharmacol 12:1052–1061

    CAS  Google Scholar 

  25. Sudlow G, Birkett DJ, Wade DN (1975) Mol Pharmacol 11:824–832

    CAS  Google Scholar 

  26. Israili ZH, Dayton PG (2001) Drug Metab Rev 33:161–235

    Article  CAS  Google Scholar 

  27. Maruyama T, Otagiri M, Takadate A (1990) Chem Pharm Bull 38:1688–1691

    CAS  Google Scholar 

  28. Cheng Y, Prusoff WH (1973) Biochem Pharmacol 22:3099–3108

    Article  CAS  Google Scholar 

  29. Kenakin TP (1993) In: Pharmacologic analysis of drug/receptor interaction, 2nd edn. Raven, New York, pp 385–410

  30. Swillens S (1995) Mol Pharmacol 47:1197–1203

    CAS  Google Scholar 

  31. Munson PJ, Rodbard D (1988) J Recept Res 8:533–546; Erratum 1989-1990, 1989, 1511

    CAS  Google Scholar 

  32. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR (2002) Biochem Pharmacol 64:1355–1374

    Article  CAS  Google Scholar 

  33. Kopitar Z, Weisenberger H (1971) Arzneim Forsch 21:859–862

    CAS  Google Scholar 

  34. Hartung G, Stehle G, Sinn H, Wunder A, Schrenk HH, Heeger S, Kranzle M, Edler L, Frei E, Fiebig HH, Heene DL, Maier-Borst W, Queisser W (1999) Clin Cancer Res 5:753–759

    CAS  Google Scholar 

  35. Kratz F, Muller-Driver R, Hofmann I, Drevs J, Unger C (2000) J Med Chem 43:1253–1256

    Article  CAS  Google Scholar 

  36. Warnecke A, Kratz F (2003) Bioconjug Chem 14:377–387

    Article  CAS  Google Scholar 

  37. Votano JR, Parham M, Hall LM, Hall LH, Kier LB, Oloff S, Tropsha A (2006) J Med Chem 49:7169–7181

    Article  CAS  Google Scholar 

  38. Zhang JH, Chung TD, Oldenburg KR (1999) J Biomol Screen 4:67–73

    Article  Google Scholar 

  39. Piafsky KM, Borga O (1977) Clin Pharmacol Ther 22:545–549

    CAS  Google Scholar 

  40. Brinkschulte M, Breyer-Pfaff U (1980) Naunyn Schmiedebergs Arch Pharmacol 314:61–66

    Article  CAS  Google Scholar 

  41. Kornguth ML, Hutchins LG, Eichelmann BS (1981) Biochem Pharmacol 30:2345–2441

    Article  Google Scholar 

  42. Israili ZH, El-Attar H (1983) Clin Pharmacol Ther 33:255

    Google Scholar 

  43. Israili ZH, Bharmal F, Tiliakos N (1985) Fed Proc 44:1124

    Google Scholar 

  44. Brunner F, Muller WE (1987) J Pharm Pharmacol 39:986–990

    CAS  Google Scholar 

  45. McGowan FX, Reiter MJ, Pritchett EL, Shand DG (1983) Clin Pharmacol Ther 33:485–490

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Roche Diagnostics (Penzberg, Germany) for financial support, L. Stecher and S. Wittich for exploratory experiments and W. Sippl (Halle) for the 3D graphic for the online edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Jung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

216_2007_1351_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, U., Jung, M. Determination of drug–serum protein interactions via fluorescence polarization measurements. Anal Bioanal Chem 388, 1147–1156 (2007). https://doi.org/10.1007/s00216-007-1351-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1351-7

Keywords

Navigation